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ABSTRACT

In this paper we study the problem of identifying in-set and out-
of-set speakers. The goal is to identify whether an unknown input
speaker belongs to either a group of in-set speaker or an unseen
out-of-set group. A state-of-the-art GMM classifier with Universal
Background Model (UBM), and standard likelihood ratio test are
used as our baseline system. We propose an alternative hypothesis
testing method that employs neighborhood information with re-
spect to each in-set speaker model in the model space based on the
Kullback-Leibler divergence. The Bayes Factor is used in the veri-
fication stage (accept/reject hypothesis). We evaluate the proposed
procedure on a clean CORPUS1 set, and a noisy CORPUS2 set
which contains session-to-session variability. Experiments show
an improvement in Equal Error Rate for the system even when in-
set speaker models are acoustically close in the model space, and
as the in-set speaker size increases.

1. INTRODUCTION

The problem of identifying in-set/out-of-set speakers (or open-
set speaker recognition) is a major challenge when the subjects
grouped for the in-set are arbitrary. If the in-set group possesses
some physical trait (i.e., age, physical size, etc.) or language trait
(i.e., same geographical region, dialect, accent, etc.), the in-set
speaker detection is presumably easier. However, if testing utter-
ances are unconstrained, a testing observation may or may not be
one of the defined classes in the training data set. In general, based
on the likelihood of the speech features, open-set speaker recog-
nition first classifies the observation into the most likely speaker
class from a set of known speakers, as the “closed-set” speaker
identification. Nevertheless, open-set speaker recognition has to
further make a decision to either accept or reject a potential speaker,
whether the observation really belongs to one of the in-set (en-
rolled/target) speakers of the group, or out-of-set speakers (im-
postors/garbage/outliers). Typical applications of open-set speaker
recognition includes multi-user information access devices, foren-
sic speaker identification, and others.

Some prior studies of open-set speaker recognition examined
new decision procedures, which were based on the score space as
the outcome of the classifiers (i.e., GMM-based model [3] or VQ-
based model [2]). Various score normalization techniques have
been compared in [8].

In this paper, we address an alternative hypothesis testing based
on Bayes Factors (BF) and neighborhood information in the model
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space [5, 4] for open-set recognition problem. The experiments
are constructed for a text-independent task with limited training
data for each speaker model (approximately five seconds worth
of speech for each speaker). A fixed-size speaker set was ran-
domly selected as the working speaker space, when each speaker
rotated its role acting as in-set or out-of-set speakers for different
experiments. We use GMM/UBM based classifier as our base-
line system. The distance measure between neighbors is based
on the relative information entropy, Kullback-Leibler (KL) diver-
gence. An alternative Bayesian approach is also compared with
the conventional Likelihood Ratio Test (LRT). We believe there
will be a reduction in the Equal Error Rate (EER) of the system
performance with the new Bayesian approach compared with the
standard approach based on UBM, when the speaker models are
not well separated in the model space.

This paper is organized as follows: First, we discuss the ob-
jective formulation of the open-set problem. In Sec.3, we briefly
review the GMM-UBM based classifier. Next, we introduced the
speaker’s neighborhood information within the model space in Sec.4.
In Sec.5, we discuss Bayesian Interpretation and alternative hy-
pothesis testing. We explain and report our experimental results in
Sec.6. Finally, conclusions and future work are discussed in Sec.7.

2. OBJECTIVE FORMULATION

We assume we are given a set of � in-set (enrolled) speakers in a
system, and the collected data � � , corresponding to each enrolled
speaker � � , � 	 � 	 � . Let the data � � represent all other
non-enrolled speakers in the development set. Each speaker de-
pendent statistical model

� � � � � � � 	 � 	 � � can be obtained
from

� � � � � � � ! � # # # � � � % ' � where ( � denotes the total number
of samples belong to speaker � � .

If � denotes the sequence of feature vectors extracted from the
test utterance, then the problem of identifying in-set versus out-of-
set speaker requires that we perform two statistical stages. In the
first stage, called speaker identification or speaker classification,
we first classify � into one of the most likely in-set speakers,

� *
,

e.g., � * + - . / 1 - 2
� 4 � 4 6 8

9 � : � � < # (1)

In the second stage, called speaker verification or outlier verifi-
cation, we verify whether the observation � truly belongs to

� *
or not (accept/reject). In general, this stage is formulated as a
problem of statistical hypothesis testing when the null hypothe-
sis > ? , represents the hypothesis that � really belongs to model� *

, against the competitive hypothesis > A , that represents the hy-
pothesis where � is actually “not” from model

� *
. The likelihood
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ratio test is given by:

�
� � � � � �

�
� � � � � �

� � � �
accept � � ,� � �
reject � � (accept � 	 ). (2)

where
�

is a threshold,
� � is a competitive model (anti-model),

and �
� 
 � 
 � is the likelihood generated from each model. In prac-

tice, it is impossible to have a true anti-model for the competitive
speaker class, otherwise we could define such a speaker model as
one class in the training phrase. The conventional strategy assumes
another special class, or speaker independent model, as a universal
representative of all other speakers excludes all the in-set speakers
(e.g., UBM).

3. GMM-UBM AND MAP ADAPTATION

Recently, state-of-the-art Gaussian Mixture Model (GMM) with
Maximum A Priori (MAP) speaker adaptation has become the dom-
inant approach in text-independent speaker recognition [7]. A
speaker independent model, or Universal Background Model (UBM),
is trained from the non-target speakers by the Expectation Maxi-
mization (EM) algorithm. The probability density function (pdf) of
an � -Gaussian components for � -dimensional observation vec-
tors � is defined as:

�
� � � � � � � ��� � 	 � � � � � � � � � � (3)

where � � � is the weight of the
�

-th component, and � � � is the
Gaussian probability density function with mean � � � and covari-
ance matrix � � � , which is usually assumed diagonal. For each tar-
get speaker, a speaker dependent GMM (

� � � � �� � � �� � � �� � � ) can
be created by MAP adaptation of UBM parameters

� � � � � � � � � �
and the training data � � via the following formula:�� � � � � �� � � � � � � � � � � �� � � � � � � � (4)

where � � is the weight assigned to the
�

-th component in the
UBM, and

�
is a relevance factor which depends on the parame-

ter and controls the balance of adaptation. The speaker dependent
model obtained from MAP-adapted UBM provides a tighter cou-
pling between the speaker specific model and the UBM. For our
study, only mean adaptation is considered since out prior experi-
ments showed this was superior to the system with all parameter
adapted.

4. NEIGHBORHOOD IN MODEL SPACE

The basic idea behind “nested-neighborhood” structure in the model
space is that all competing models of a given model sit inside one
neighborhood of the underlying model. The small neighborhood
can be viewed as a robust representation of the original model and
it contains all possible variants from the original model due to mis-
matches and other estimation errors, when the large neighborhood
represents all potential competing models of the original model.
The idea has been successfully applied in the HMM model space
for Utterance Verification (UV) applications [5]. We developed
such an idea for open-set recognition in this section.

Given a set of � in-set speaker GMMs in the system, denoted
as

� � � � � � � � � � , let each
� � can be viewed as a point in

the model space
�

. For any given two speaker models in the space
and their corresponding training data, we can estimate a distance
between these two GMMs using the symmetric Kullback-Leibler
(KL) divergence. The symmetric KL divergence is defined as the
sum of relative entropy between model

� !
and model

� #
, and also

between model
� #

and model
� !

[1]:% ' � � ! � � # � � � ) + , . 0 1 2 4 � � ! � � �� # � � � 6 � � ) 7 , . 0 1 2 4 � � # � � �� ! � � � 6 (5)

where
� ! � � � and

� # � � � are the likelihoods of occurances of ob-
servation � , given that it belongs to model

� !
and

� #
respectively.

The KL divergence quantifies the information for discriminating
between the two speaker models. Subsequently, we can construct
an � > � distance matrix where diagonal elements are zeros,
denoted as ? . The distance matrix is then normalized by its maxi-
mum element. Next, for each speaker model

� � , we label all in-set
speaker models for a nested neighborhood (NNB) with respect to
model

� � , with the following definition [5]:@ Self neighborhood
� , � 0� : consists of only the model

� � it-
self.@ 1st-level neighborhood

� , 	 0� : is a small neighborhood that
surrounds the model

� � . The neighborhood consists of
speaker models

� !
such that A � ? 1 � � B 6 � D , for � �B � � .@ 2nd-level neighborhood

� , ! 0� : is a medium neighborhood
that surrounds the 1st-level neighborhood. The neighbor-
hood consists of speaker models

� !
such that D � ? 1 � � B 6 �F

, when
F H D , for � � B � � .@ 3rd-level neighborhood

� , J 0� : is a larger neighborhood sur-
rounding the 2nd-level neighborhood. The neighborhood
consists of speaker models

� !
such that ? 1 � � B 6 H F

, for
� � B � � .

Here, we have D and
F

as distance bounds, and are constrained asA � D � F � � # A . Both parameters can be set dependent on the
in-set speakers model space.

With the use of neighborhood information, we can define an
alternative hypothesis testing as:L� � : The observation belongs to the self neighborhood or 1st-level
neighborhoodL� 	 : The observation belongs to the 2nd-level neighborhood

5. BAYESIAN INTERPRETATION

In the Bayesian framework, we first estimate an a priori pdf for
each class. Next, the decision is made based on the calculation of
the Bayes Factors [5, 6]. Given the observation vectors � along
with two hypotheses � � and � 	 , the Bayes Factor is computed as:M O � �

�
� � � � � ��

�
� � � � 	 �

� Q �
� � � � � � � � � 


�
� � � � � � � S � �Q �

� � � � 	 � � 	 � 

�

� � 	 � � 	 � S � 	 (6)

where
� � � � 	 are the model parameters under � � and � 	 re-

spectively, �
� � � � � � � and �

� � 	 � � 	 � are the prior densities, and

�
� � � � � � � � � and �

� � � � 	 � � 	 � are the likelihood functions of the
model parameters under their hypotheses.

Bayes Factor is the ratio of the posterior odds 1 of � � to its
prior odds, regardless of the value of the prior odds [6]. Therefore,

1Any probability can be converted to the odds scale as T V V Y Z[ ] T ^ _ ^ ` b ` d e f g i k [ ] T ^ _ ^ ` b ` d e l .
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Bayes Factors can be used to compare with a threshold to make a
decision with regards to � � [5]. Based on neighborhood defini-
tion, The Bayes Factors used to verify the hypotheses

�
� � and

�
� �

can be simplified as:

� � � � �
� � � � � � 
� �

� � � 	 � 
 �
�

� 	 � � 	 � � 	� 
 
 � �
�

� � � 	 � � 	� 

�

� � � � � � 
� �
� � � 	 � 
 �

�
� 	 � � 	 � 
 	� 
 (7)

where
�

is a threshold, �
� � � 	 � 
 is the likelihood of observation �

given that it belongs to model
	 �

, �
� 	 � � 	 � � 	� 
 and �

� 	 � � 	 � 
 	� 
 are
the prior probabilities with constraints that

�
� � � � � � 
� �

� 	 � � 	 � � 	� 
 �
� and

�
� � � � � � 
� �

� 	 � � 	 � 
 	� 
 � � , and
� � � are tuning weights.

6. EXPERIMENTS

6.1. Experimental Setup

The two corpora are used for our study. While CORPUS1 has
only a single recording session and is noise-free, CORPUS2 has
multiple recording sessions and is noisy.

6.1.1. CORPUS1: Clean speech corpus (TIMIT)

A set of 60 male speakers was randomly selected as a speaker
sample space. These 60 speakers serve both as in-set speakers
and out-of-set speakers (impostors) depending on the experimen-
tal set. In particular, three different sizes of in-set speakers are
considered (e.g., 15, 30, and 45). For example, 15 speakers were
randomly selected from the speaker sample space as the in-set
speakers, with the remaining 45 speakers taking the role of im-
postors (‘15in/45out’). Similar to other Round-Robin test pro-
cedures, different combinations of in-set and out-of-set speakers
were also selected, resulting in four distinct ‘15in/45out’ groups,
two distinct ‘30in/30out’ groups, and two (with some overlap)
‘45in/15out’ groups. The training and testing speech data of each
speaker were randomly selected and concatenated from the origi-
nal TIMIT database, with no data overlap. The training data was
limited to approximately 5 seconds worth of speech, while testing
data was created for 2, 4, 6, and 8 seconds worth of speech. For
more reliable results, similar to the above setup, another training
and testing data set were also created for the same 60 speakers
for comparison. Also, some speakers excluded from the working
speaker sample space are used as development data.

6.1.2. CORPUS2: Noisy speech corpus

The second data test set consists of speech recorded with aircraft
cockpit noise. The transmissions are short in duration and have
multiple recording phases (i.e., contains session-to-session vari-
ability). Similar to the experimental framework for the CORPUS1,
a collection of 36 speakers were randomly selected as the speaker
sample space. The size of different in-set/out-of-set speaker groups
are ‘9in/27out’(4 groups), ‘18in/18out’(2 groups), and ‘27in/9out’
(2 groups). The training data was also limited to approximately 5
seconds worth of speech, and testing data was again created for 2,
4, 6, and 8 seconds worth of speech. Two sets of training and test-
ing for each speaker group were also created for overall averaging
of the results. Finally, we tested a portion of the noisy CORPUS2
data using NIST STNR tool, and found that our data has a STNR
value of 19 � �

, which is much more noisy than CORPUS1, which
has a value of 39 � �

.
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(a) CORPUS1: Clean speech corpus results.
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(b) CORPUS2: Noisy speech corpus results.

Fig. 1. In-set vs Out-of-set Speaker Identification performance in
terms of EER(%) at 2, 4, 6, and 8 second test utterances.

6.2. Front-end Processing

The speech analysis frame rate is set to 30 ms with a 10 ms skip
rate. Speech is pre-emphasized with the filter

� � � 
 � � � � � � 
 .
Nineteen-dimensional Mel-Frequency Cepstral Coefficients (MFCC)
are extracted, and appended with delta-energy. For CORPUS1, si-
lence and low-energy speech parts are removed using a general en-
ergy detection technique (e.g., frames that have higher energy than
the pre-defined threshold are selected). For CORPUS2, frame se-
lection is based on formant information (e.g., frames that have the
estimated three formant locations lie within a specified frequency
range (200-3900 Hz) are selected). Cepstral Mean Normalization
is applied to each utterance to reduce channel based spectral shap-
ing.

6.3. Evaluations

6.3.1. Baseline System

First, the UBM is constructed from speakers in the development
set, with 32 Gaussian components. The GMM construction starts
with vector quantization codebooks with several updated itera-
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tions, and the GMM parameters are consequently adjusted with
EM iterations. A single speaker-dependent GMM for each in-set
speaker is then estimated from the UBM, based on MAP adapta-
tion. The number of Gaussian mixtures is also fixed to 32 for all
speakers in our experiments. The baseline system employs equa-
tion (1) and (2), when the verification stage is decided based on
likelihood ratio test against the UBM (

�
�

� � � �

�
).

6.3.2. Neighborhood Information and Bayesian Approach

We keep the same set of speaker GMMs as obtained from the
baseline system. During the training stage, the distance matrix
of each in-set speaker group is computed based on the KL diver-
gence(e.g., from Eq. 5). Each speaker now has a codebook that
contains speaker neighborhood information, along a with speaker
GMM. For each testing observation, the most likely in-set speaker
is again chosen from the maximum likelihood score. The verifi-
cation stage employs the alternative hypothesis as mentioned in
Eq. 7.

6.3.3. Results and Discussions

Figure 1 shows the average Equal Error Rate (EER) of the sys-
tem performance over all experiments with the same ‘in-set/out-
of-set’ size at different testing utterance durations. ‘UBM’ (dash
lines) denotes the baseline system, which tests the likelihood ra-
tio against the UBM. ‘NNB’ (solid lines) denotes the system with
alternative hypothesis testing based on nested neighborhood infor-
mation. As we can see, the EERs tend to degrade as the size of
the in-set speaker group increases. For the CORPUS2 results, the
new hypothesis testing performs slightly worse for the 2 second
test utterance, but dramatically reduces EERs as the duration in-
creases (e.g., 4 seconds and greater). The NNB also enhances the
performance of larger sized in-set groups with performance ap-
proaching that seen for smaller groups. For the clean CORPUS1,
we do not see consistent improvement when employing our alter-
native hypothesis testing (NNB), except some EER reduction for
experiments with in-set size 45 for 4 and 6 second test utterances.

It would be useful to consider performance differences us-
ing the NNB hypothesis test for the clean CORPUS1 and noisy
CORPUS2 experiments. The reason is that for the clean COR-
PUS1 set, the speaker models are well-trained and more separated
than speaker models seen in the CORPUS2 set. Figure 2 shows
an example histogram of the distance distribution of one experi-
ment with ‘15in/15out’ clean CORPUS1 and ‘18in/18out’ noisy
CORPUS2. For CORPUS2, the distance distribution is well dis-
tributed on the ‘1st-level neighborhood’ and ‘2nd-level neighbor-
hood’, probably because of either (i) the physical properties of se-
lected speakers; or (ii) the less discriminative models as a result
of noise content in the data. Such a distribution can cause more
confusion for the “closed-set” recognition, but is useful for NNB
hypothesis testing. For CORPUS1, the distance distribution is
more distributed on the ‘2nd-level neighborhood’ (i.e., 0.2-0.55 for
this example) and ‘3rd-level neighborhood’ (i.e., 0.55-1.0), which
shows good discriminative ability between speaker models. So,
for this in-set group, few or none of the speakers are in the 1st-
level neighborhood, and therefore the NNB-nested neighborhood
method will not be as successful. Under this condition, the NNB
approach becomes similar to cohort normalization (CN) [8] when
the cohort speakers are selected from the in-set speaker group.
This observation also helps to explain why improvement occurs
for the CORPUS1 ‘45in/15out’ test configuration, since a larger
number of in-set speakers fall within the 1st-level neighborhood.
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Fig. 2. Histogram of the distance distributions: (a) CORPUS1
contains clean data, (b) CORPUS2 contains noisy data with
session-to-session variability.

Therefore, a distance based analysis of the in-set speaker models
as shown in the distributions from Fig. 2 can be an effective way
of predicting when NNB versus traditional hypothesis testing will
be more successful.

7. CONCLUSIONS AND FUTURE WORK

In this paper we have studied the problem of identifying in-set
versus out-of-set speakers. A state-of-the-art GMM-UBM sys-
tem with MAP adaptation, and standard likelihood ratio test was
used as our baseline system. We proposed the NNB (nested neigh-
borhood) method which employs neighborhood information in the
model space and the Bayes Factors. Such hypothesis testing is
promising when the speaker size of the in-set group increases, or
speaker models are close together in the model space and distance
distribution (e.g., Fig. 2) is well distributed. The NNB method was
evaluated on both clean (CORPUS1) and noisy (CORPUS2) data.
Our future work will consider a feature fusion technique with the
use of confidence measures to improve the system performance.
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