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ABSTRACT

In the field of automatic language identification, several

mostly-empirical arithmetic fusion operations are currently

done to make a consensus decision from a set of acoustics-

based identification systems whose estimated performance

is taken into account by means of weighting techniques.

This paper presents how to apply the Discriminant Factor

Analysis method to formally compute and use weighting

performance confidence indexes at the expert and class

levels. Moreover, the observation level is also explored.

These confidence indexes allow us not only to qualify the

identification decision with additional insight by means of

a certainty degree but also to provide acoustics-based

identification systems with powerful uncertainty-based

inference techniques where systems’ a priori performance

knowledge is a key heuristic-like element to improve

language identification capabilities.

1. INTRODUCTION

The aim of Automatic Language Identification (ALI)

systems consists of identifying as soon as possible the

language in which an utterance has been pronounced.

Several approaches have been studied to take advantage of

language-discriminant features. The most classical ones

issue forth:

• Acoustic information: vocalic and consonant phones and

their frequency of occurrences differ among languages [5];

• Phonotactic information: specific sequences of phonetic

units appear with different occurrences for each language

[8];

• Prosody: the sound duration, the fundamental frequency,

the intensity variation or the rhythm are language

discriminant lineaments [6].

To take these various linguistic features into account,

“primary ALI systems” are built: the acoustic system

where the acoustic information of each language is

modelled by Gaussian Mixture Models (GMM) or Hidden

Markov Models (HMM) [8]; the phonotactic system where

bi-gram or tri-gram models traduce the language

phonotactic rules; the prosodic system which is based on

statistical moments computed on the rhythm and the

fundamental frequency, and so on. To take several sources

of information into account, an ALI system is composed of

several primary ALI systems which are now called

experts, but the problem of merging decisions or decision

scores appears. Empirical techniques have been

implemented in order to fuse identification decisions

coming out of several experts. Frequently, good

performance is obtained by weighting properly the

decision scores [3]. The difficulty is to define the weights

which represent the expert performance confidence, and

to determine for each language decision its confidence

which is called the class performance confidence.

We propose an original way to define them

automatically and we study alternative fusion methods

based on them.

One way of formally computing performance

confidence indexes consists of extracting language-

discriminant information by processing a development

speech corpus and using the Discriminant Factor Analysis

(DFA) method in the decision score field. The DFA

projection is used to obtain the confusion matrix and to

provide expert and class performance confidence indexes.

Therefore, with these confidence indexes, three kinds

of fusion techniques may be studied: empirical fusion,

statistical fusion and uncertainty-based fusing techniques

like the one provided by the Theory of  Evidence.

In this paper, we present in section 2 how finding the

expert and class performance confidence indexes. In

section 3, we describe the three fusion techniques.

Experiments are explained in section 4.

2. PERFORMANCE CONFIDENCE INDEXES

ALI primary systems or experts accept a speech utterance

called the observation, as input, and provide the class (or

language) decision as output, after computing language

scores (in many cases, a statistical model is used and the

language score is the language likelihood); so that they

handle a vector of language-likelihood values. Given M
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languages to identify, Li, 1≤i≤M, and N experts, sj, 1≤j≤N, we

obtain for each observation N vectors of M values, each

one ranging from 0 to 1; this global observation is

represented as a score matrix (Table I):

δ = [ dij ]1≤i≤M, 1≤j≤N.

To explain our future fusion techniques, it is

necessary to define not only the expert performance

confidence indexes and the class performance confidence

indexes, but also the observation performance confidence

indexes which represent for each expert the confidence of

the decision taken for the observation. The two first

families of indexes are independent of the current

observation.

So to define expert and class confidence, we need the

score matrices of the development set of acoustic segments

for each expert sj; we apply the DFA on an expert basis

and build the confusion matrix (Figure 1); the class

confidence indexes (βij,1≤i≤M) can directly be mapped from

the diagonal values of the confusion table while the expert

confidence index must be computed as an averaged value:

αj=(1/M) ∑i∈[1,M] βij.

Many solutions may be proposed to define the

observation confidence indexes. We retain two formulas to

be applied on test-set matrices: given an identification

system sj and î the decision class, dîj = maxk (dkj),

k∈[1,M],

•
kj

îk
îjj dd

≠
−= maxγ ;

• ∑
≠−

−=
îk

kjîjj d
M

d
1

1γ

Table I. Matrix δ = [ dij ]1≤i≤M, 1≤j≤N, of scores obtained for each

observation.

Figure 1. Obtaining confidence indexes

3. FUSION TECHNIQUES

3.1. Empirical fusion

Summing and multiplying score values are the most

current operations to empirically fuse decision scores.

Sometimes estimated performance indexes are taken into

account to weight each system decision score. The concept

of weighting performance indexes matches ours regarding

the expert confidence index α described above. Thus, a

language is considered as the identified one if it

corresponds to the greatest value computed with the

following weighted rules:

• Sum L* = arg max i∈[1,M] [ Σj∈[1,N] αj dij ]

• Product L* = arg max i∈[1,M] [ Πj∈[1,N] dij
αj ]

3.2. Statistical Fusion

The GMM fusion

The occurrence of scores matrices can statistically be

modelled by Gaussian Mixture Models (GMM). One

model is learned for each language Li with the matrices

issued from the development-set acoustic segments. We

initialize by Vector Quantification and we apply the

iterative Expectation-Maximization algorithm to optimize

Gaussian components.

Let δ be the score matrix corresponding to the

acoustic segment y. The probability that the segment y

belongs to language Li is given by:

P(δ |Li)  = Σn∈[1,Qi] ωn N(δ,µn,σn)

where n is the Gaussian component number and Qi the

total number of components for the language Li. The

language the most likely for matrix δ is the one

corresponding to the maximum likelihood:

L* = arg maxi [ P(δ |Li) ].

The DFA fusion

As the dimension NxM of the score matrices space is

relatively large, we try to reduce their dimension and

search a better representation space. We apply the DFA on

the set of score matrices obtained from the development

set of acoustic segments. We use the M–1 factorial axis

corresponding to the M–1 eigenvalues (different to zero)

and we project the score matrices on this subspace.

Besides, we take advantage of this projection step to

implement the DFA-based classifier by applying on each

score matrix the following identification decision rule:

if Dist(δ |Li) represents the Euclidean distance between the

projected matrix δ and the projected center of gravity of

language Li,

L* = arg mini [Dist(δ |Li)].
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3.3. Theory of Evidence

Let L = {L1,L2,…,Li,…,LM} denote the finite set of possible

languages to be identified; this set L is composed of M

exhaustive and exclusive hypotheses of the decision

process and we assume every union of hypotheses may be

a response of the decision process. The set 2
L
 of all

possible events A based on L is the set of all subsets of L:

2
L
 = {A | A⊆L}; |2

L
|=2

M
,

that is to say:

2
L
 = {∅, {L1}, {L2}…, {LM}…, {L1, L2}…, {LM-1, LM}…, L}

For each unknown utterance, and for each expert sj,

we define a basic belief mass function mL
Sj

, which

explains how the decision L* belongs to the subset A of L:

mL
Sj

 : 2
L
� [0, 1]

with the constraints:

∑A⊆L mL
Sj

 (A) = 1 and mL
Sj

(∅) = 0.

This function is built from the score matrix δ of the

utterance  by assigning the score values to each singleton:

mL
Sj

({L1}) = d1j, ..., mL
Sj

({Li}) = dij,..., mL
Sj

({LM}) = dMj,

an uncertainty value to A=L corresponding to the

complement to one of the observation confidence index,

mL
Sj

(L) = 1 – γj, and  the null value to the rest of the events

in 2
L
.

In order to verify the constraints above, we normalize

all the belief mass values after computing a normalization

factor: Rj = 1 / ΣAk⊆L mL
Sj

(Ak); and we apply it as a

multiplying factor:   mL
Sj

(Ar) = Rj mL
Sj

(Ak); ∀Ar⊆L .

Thus the set of focal elements includes all the subsets

A such as its corresponding mL
Sj

(Ar) > 0.

Let (sk, sl) represent any pair of the N experts, we

may combine the belief mass values of the focal elements

(B, C, etc.) of these experts on a cascade-like pair basis by

applying the Dempster’s orthogonal combination rule:

mL
Sl,k

( A) = KL ⋅ ∑B∩C=A mL
Sk

(B) ⋅ mL
Sl

(C);

where KL = 1 / [1–∑B∩C=∅ mL
Sk

(B) ⋅ mL
Sl

(C)] is a

normalization factor taking into account the case where the

empty set results from conjoining focal elements. We

obtain thus a global belief mass function, noted mL
S
(A),

for each event A.

We weight basic belief mass functions of the events

(B, C, etc.) by discounting the expert and class confidence

indices (respectively α and β) before doing the orthogonal

operation (and before normalizing as well):

mL
βij,Sj

 (C) = βij ⋅ mL
Sj

(C), ∀C ≠ L;

mL
αj,Sj

 (L) = (1 – αj ) + αj ⋅ mL
Sj

(L); αj=(1/M)∑i∈[1,M] βij.

We use the pignistic transformation [7] to derive a

probability on L, from the belief mass values:

BetP(Li)=∑Li∈A mL
S

(A) / |A|.

Thus, the decision process can be carried out by

maximum pignistic probability [2]:

L* = arg maxi [ BetP(Li) ].

4. EXPERIMENTATION

4.1. Fusion System Architecture

Acoustic data is provided by the MULTEXT corpus [1]

which comprises a set of 20 kHz 16-bit sampled records in

5 languages:  English, French, German, Italian and

Spanish. Data consists of read passages from the

EUROM1 corpus pronounced by 50 different speakers (5

males and 5 females per language). The mean duration of

each passage is 20.8 seconds.

The corpus is split into three partitions for each

language: the learning set, the development set and the test

set (2 speakers: 1 male and 1 female who do not belong to

the other sets).

Figure 2. Fusion system architecture.

The ALI system is based on three ALI subsystems and

a fusion module (see Figure 2):

• Acoustics Expert [5]: After an automatic vowel

detection, each vocalic segment is represented with a set

of 8 Mel-Frequency Cepstral Coefficients and 8 delta-

MFCC, augmented with the Energy and delta Energy of

the segment. This parameter vector is extended with the

duration of the underlying segment providing a 19-

coefficient vector. A cepstral subtraction performs both

blind removal of the channel effect and speaker

normalization. For each recording sentence, the average

MFCC vector is computed and subtracted from each

coefficient.

• Rhythm Expert [6]: Syllable may be a first-rate

candidate for rhythm modelling. Nevertheless, segmenting

speech in syllables is typically a language-specific

mechanism; then no language independent algorithm can

be derived. For this reason, we have introduced the notion

of pseudo-syllables derived from the most frequent

syllable structure in the world, namely the CV structure.

Using the vowel-no vowel segmentation, speech signal is

parsed in patterns matching the structure: .C
n
V. Each

pseudo-syllable is then characterized by its: consonant

global duration, vocalic duration, complexity (the number

of consonant segments), and energy.

• Fundamental Frequency Expert [6]: The fundamental

frequency outlines are used to compute statistics within the

same pseudo-syllable frontiers (previously defined) to
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model intonation on each pseudo-syllable. The parameters

used to characterize each pseudo syllable intonation are a

measurement of the accent location (maximum f0 location

in regard to vocalic onset) and the normalized fundamental

frequency bandwidth on each syllable.

For each expert, we applied the same learning-testing

procedure: for each language, a Gaussian Mixture Model

(GMM) is trained using EM algorithm with LBG

initialization [4]. The optimal number of components of

the mixture is obtained from experiments on the learning

part of the corpus. During the test, the decision relies on a

Maximum Likelihood procedure.

The performance of these three experts is given in

Table II, and it is considered as a reference (three runs

were launched where the rate difference showed up at the

expert level because of internal parameter values, e.g. the

number of Gaussians or the aleatory initialization of

GMMs). We may observe the relatively bad performance

of the fundamental frequency-based expert.

The three techniques of fusion (empirical, statistical

and evidential ones) are experimented to merge the

decision scores (outputs of the three experts) as explained

in the previous sections. For the GMM fusion, we use 20

Gaussian components. The development set is used to

compute the class and expert performance confidence

indexes.

4.2. Tests and Results

Most important results in fusing the three experts are

shown in Table II:

• The empirical fusion delivers higher identification rates

than those of any subsystem: up to 85%. Addition or

weighted addition give rather similar performance.

• The statistical fusion delivers acceptable identification

rates (keeping in mind no weighting is done). Note that

with the GMM fusion, a better identification rate, 84%,

was obtained than with the DFA, 83%, where the decision

space was reduced from  15 to 4 axes.

• The best identification rate, 90%, is reached for the

fusion system using the Theory of Evidence.

In addition, we tested the influence of 2-expert fusion;

as a result, we observed that some combinations delivered

better identification rates than the 3-expert combination

when fusing empirically. This was not the case for the

modelled fusion strategies.

5. CONCLUSION

Formal methods are applied both to compute performance

confidence indexes and to fuse decision information

coming out of different language identification systems; it

appears as a strong alternative to empirical techniques.

Uncertainty-based fusion methods allows us to model

properly the language identification problem so that

heuristic-like inference techniques can take advantage of

weighting values in a more refined way: not only at the

expert level but also at the class and observation levels.

That can partially explain why the technique based on the

Theory of Evidence has delivered better identification

rates compared to empirical techniques. Nevertheless, the

statistical approach does not allow any direct likelihood-

value weighting, then the confidence indexes could only

be used so far to qualify the identification decision with a

certainty degree; a future work would be to find out, if

possible, how to weight such values though. Applying the

uncertainty-based techniques based on the Possibility

Theory/Fuzzy Logic is also a future work.

Table II. Comparison of Fusion Strategies.
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