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ABSTRACT

This paper proposes a Maximum a Posteriori (MAP) based
approach to jointly segment and identify an utterance with mixed
languages. A statistical framework for language boundary
detection and language identification is proposed. First, the MAP 
estimation is used to determine the boundary number and
positions. Further, an LSA-based GMM and a VQ-based bi-gram
language model are proposed to characterize a language and
used for language identification. Finally, a likelihood ratio test
approach is used to determine the optimal number of language
boundaries. Experimental results show that the proposed
approach exhibits encouraging potential in mixed-language
segmentation and identification.

1. INTRODUCTION 

In recent years, multi-lingual spoken language processing
becomes increasingly necessary and provides the applications of
human machine interaction in globalizing economy,
communication and information exchangeability. Most of
today’s computerized spoken dialog systems identify a language
using dedicated modules. During the past years, a wide range of
approaches to automatic language identification (LID) was 
applied, such as language-dependent Gaussian mixture models 
(GMM), GMM tokenization and single/parallel phone recognizer
followed by language modeling (single/parallel PRLM) [1][2].
Of these methods, GMM was herein the most efficient in terms
of time complexity but yielded the lowest language ID rate. In
contrast, parallel PRLM yielded the highest language ID rate but 
was the most complex system for identifying languages. The use 
of linguistic property contributes to distinguish languages of
each other. Recent work emphasizes on integrating high level
linguistic structure and extracting robust acoustic features to
improve the LID rate. 

However, these approaches focused on identifying an
utterance with a single language. Identifying mixed languages in
an utterance challenges the present LID systems. The mixed
language ID applications arise very commonly in Asia. In
Taiwan, three languages Mandarin, Taiwanese and English
are frequently mixed and spoken in daily conversations. For 
example, the sentence { ”Starbucks” ?} (Where is 
the nearest “Starbucks”?) is spoken in Mandarin-English. These 
mixed-language sentences are generally used in applications like
car navigation systems and information service dialog systems.
In this task, segmenting such an utterance into several language
segments is crucial to the development of a LID system and the

integration of speech recognizers. A language segment with a
short length of utterance cannot obtain a promising performance 
of LID rate due to insufficient information in the segment. The
present LID systems were hard to handle this kind of utterances.
Moreover, detecting the language boundary is also the key issue 
for this task. Recently, many methods of audio segmentation
have been developed, such as Akaike’s information criterion
(AIC), the Bayesian information criterion (BIC), the delta-BIC
[3] and the minimum description length (MDL). A detailed 
comparison was addressed in [4]. In these approaches, boundary
segmentation is performed by detecting acoustic changes. But, 
the difficulty is how to select appropriate model parameters and
the penalty weights. Conventionally, these values are determined
empirically and therefore limit the segmentation performance.

In this paper, we propose a MAP-based framework for
boundary detection and language identification of
mixed-language utterances. A statistical approach, including a
MAP-based probability model, an LSA-based GMM and a 
VQ-based bi-gram language model, is proposed. In this
framework, an utterance with mixed languages is segmented into
several language segments. To perform the language boundary
detection, the probabilities of occurrences of the boundary
positions, occurrences of hypothesized languages, the language
probability of each segment and the number of boundaries are
optimized using a likelihood ratio test approach. To identify a
language in each segment, a VQ-based bi-gram model is adopted.
Each codeword sequence is further converted into a codeword
occurrence vector and all the vectors are used to form a 
segment-codeword vector matrix. A latent semantic analysis is
then used to transform this matrix into a reduced space with a
small set of discriminative features. Then an LSA-based GMM
approach is proposed to model this reduced matrix. Finally, a
dynamic programming algorithm is adopted to obtain the optimal
hypothesized language sequence.

2. THE FRAMEWORK 

Consider a speech utterance S  with  feature vectors

(frames) and language boundaries, and the utterance is 

therefore segmented into

SN

q
1q speech segments to form a

segment sequence
121 ,,, qSSSS . Suppose the positions of 

the language boundaries are denoted as
qrrrR ,,, 21

,

Sq Nrrr 211 , and the corresponding language

sequence is 
121

,,,
~

qSSS LLLL ,
KLLLL ,,1Si

,
which is a language associated with speech segment .
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The proposed MAP-based framework of detecting language
boundary and identifying languages is given as follows.
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where is the conditional probability of boundary

positions given the number of language boundary q ;

qRP |
R

qRLP ,|
~

is the conditional probability of language sequence

L
~

respective to the boundary number and positions. And

qRLSP ,,
~

| represents the conditional probability of a

segment sequence with boundary number  and positions

respective to the language sequence

q R

L
~

.

2.1 Probability Estimation of Boundary Position

To estimation the conditional probability , the

occurrence probability of the boundary positions is assumed to
be equal. There is no permutation of boundary positions by the
constraint, . And a uniform

distribution is considered and given as follows.

qRP |

Sq Nrrr 211

q
N

qRP S 2
1|                            (2)

where possible positions are taken for boundary .2SN ir

2.2 Probability Estimation of Language Sequence 

The conditional probability qRLP ,|
~  represents the

probability of language sequence L
~

associated with the
number of language boundary and the boundary positions. 
Furthermore, the relation between boundary positions  and

language sequence 
R

L
~

is independent, then a multi-nominal

distribution estimation of language sequence as L
~

 is follows.
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where in the length of segment ;
1iiS rrn

i iS
iSLP  is 

the probability that the language of speech segment  is 

and is estimated from the training corpus 

to represent the a priori probability of language  for a

segment.

iS
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2.3 Segment-based Language Identification 

Given the boundary number q and boundary positions 

qrrrR ,,, 21
, an utterance is divided into a segment

sequence
121 ,,, qSSSS . Assume the probabilities of each

speech segment  associated with  are independent. The

probability of utterance  given ,
iS

iSL

S q qrrrR ,,, 21
 and the

corresponding language sequence
121

,,,
~

qSSS LLLL  is 

equal to the product of all probabilities of segment  given the

corresponding language , described as follows.
iS

iSL

                         (5)
1

1

|,,
~

|
q

i
Si i

LSPqRLSP

Consider a speech segment  with length  represented as

a vector sequence

iS
iSn

iS

iiii

n

SSSS xxxX ,,, 21 . The feature vector

sequence is then vector quantized using a language-dependent
codebook derived from K-means algorithm [5], yielding a 

codeword sequence iS

iiii

n
SSSS cccC ,,, 21 . The codeword

sequence of each segment is further represented by a codeword
occurrence vector

iiii SUSSS yyyY ,,2,1 ,,, , where U  is the

size of the final codebook, which is the union of all 
language-dependent codebooks, and

i
 represents the

number of occurrences of codeword  in segment , given
Suy ,

u iS

Uu 1 . Assuming that the a priori probabilities associated
with language

kLP and speech segment
iSP  are

equally-likely, each speech segment can be represented using the 
above three components. 
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where
ii SS LXP | represents the conditional probability

associated with the feature vector sequence with respect to 

language
i

and reflect the acoustic property of language 
i

and is modeled by a Gaussian Mixture Model in acoustic space; 

iSX

SL SL

iii SSS LXCP ,| represents the conditional probability

associated with the codeword sequence  given the language

i
and the feature vector sequence

i
 specifies the

syntactical property of a sequence of phones in language 
i
.

An n-gram language model is commonly used to model the
syntactical characteristic of a language. In this approach, a
VQ-based bi-gram model is adopted as follows. 

iSC

SL SX

SL
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where
iiii SSSS LXCYP ,,|  represents the conditional

probability associated with ,  and  in codeword

occurrence vector space, specifying the lexical property of
language . The GMM is adopted to model the distributions of

codeword occurrence vectors in a language.

iSL
iSX

iSC

kL

2.3.1 GMM with Latent Semantic Analysis

The LSA formalism is adopted to reduce the number of
dimensions of the space by constructing a codeword-by-segment
matrix, whose entry appropriately reflects the number of 

occurrences of codeword , which appears in segment  in

language . The matrix is called the language information

matrix (LIM), . Latent semantic analysis is the

application of a particular mathematical technique, called
Singular Value Decomposition (SVD) [6]. The SVD projection
is computed by decomposing the codeword-by-segment matrix

into the product of three matrices, ,  and 

:

k

i

L
Suy ,

u iS

kL
LIM

NUM

LIM
NUM nUT nnS

nND

NUnDSTM T
nNnnnU

LIM
NU ,min   with            (8)

where  and have orthonormal columns. LSA

mapping the original space onto a discriminative space with the 
first axis is the direction with largest variation, and the second
with second largest variation, and so on. Choosing

nUT nND

n , a

truncated SVD with matrices ,  and  is 

derived and represented as follows.
UT S ND

T
NU

LIM
NU DSTM̂                            (9)

Let , the conditional probability
kS LL

i iiii SSSS LXCYP ,,|

is then measured as follows.

k

ii

k

ii

iiiiii

M

m
mkSmk

T

mkS

mk

mk

M

m
mkmkSmkkS

kS
T

QkSkSSSS

YYw

YNwYP

YTPYPLLXCYP

1
,

1
,,

21

,

,

1
,,,

2
1

exp
2

,,|

||,,|
 (10) 

where
iSY is the code word occurrence vector of segment

in the low-dimensional space; 

iS

kmkmkmkk Mw ,,, ,,,
, in

which
mkmk ,, , represents the mean vector and covariance

matrix of the m-th mixture of the GMM of language  and
kL

mkw ,
represents the weight of the m-th mixture.  is the

number of mixture in the GMM of language . These model 

parameters are estimated using the expectation maximization
(EM) algorithm [7].

kM

kL

2.4 Hypothesized Language Sequence and Boundary

We have derived an approach for mixed-language boundary
detection and language ID. Here a maximum likelihood ratio
scheme is adopted for mixed-language boundary detection to
determine the best solution of .q

qRLSP

qRLSP

q
L

q
L

q

q

|,
~

,max

1|,
~

,max

~

1~
1                     (11)

where is the likelihood ratio threshold. If the likelihood ratio

is less than , there are  language boundaries in S .q

The hypothesized language sequence given boundary
number is determined by maximizing the log-likelihood with 

respect to speech utterance and is estimated as follows. 

L̂
~

q̂
S

qRLSPqRLPqRP

qRLSPL

L

L

ˆ,,
~

|logˆ,|
~

logˆ|logmaxarg

ˆ|,
~

,logmaxarg
~̂

~

~ (12)

Here, dynamic programming [8] is adopted to search the best

boundary positions R̂ .

3. EXPERIMENTAL RESULTS

In previous work on language ID task, some well-established
corpora with single-language utterances have been used, such as 
the CallFriend and the OGI-TS corpus [1][2]. NIST reported
their recent evaluation on the performance of LID using the Call 
Friend corpus with 12 languages [9]. However, none contains
mixed-language utterances. In this work, we collected a read
speech corpus with mixed languages to evaluate the proposed
approaches, in which Mandarin-English and
Mandarin-Taiwanese are considered. The text sentences for
recording mixed-language speech are generated by embedding
an English phrase or a Taiwanese phrase into a Chinese carrier
sentence.

For model development, 3750 English utterances and
2250 Taiwanese utterances, spoken by 27 male and 14 female
speakers, and 1725 Mandarin utterances (from 21 male and 14
female speakers) extracted from the database TCC300 [10] were 
collected as the training databases. These databases were used to
train language-dependent codebooks, VQ-based bi-grams and
GMMs. For testing database collection, 11 male and 5 female
speakers, different from the speakers who provided the training 
data, were asked to record 21760 mixed-language utterances,
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1360 for each speaker, containing 918 Mandarin-Taiwanese
mixed utterances and 442 Mandarin-English mixed utterances. 

In order to evaluate the proposed approach, two
experiments on language boundary detection rate and LID rate
were conducted. In the first experiment, the precision rate, recall
rate and harmonic mean F criterion [11] were adopted to 
evaluate the performance. The codeword size of 64 and the
mixture number of 64 for each language were trained and used.
Tables 1 & 2 give the precision rates, recall rates and LID rate as
a function of different thresholds and penalty weights for the
MAP-based approach and the delta-BIC approach. Experimental
results show that the proposed approach outperformed the
delta-BIC. Figure 1 shows the LID rate as a function of mixture
number. The proposed MAP-based boundary detection approach
is compared with delta-BIC approach followed by different LID 
methods. Experimental results show that our proposed approach
achieved 76.2% LID rate and outperformed other approaches
using traditional GMM and the delta-BIC.

4. CONCLUSION

This work proposed an MAP-based approach to detecting
language boundary and identifying mixed languages. In this
framework, joint estimation of language boundary and LID
exhibits encouraging potential in mixed-language ID task. The 
LSA-based GMM provides a new approach for using
probabilistic distributions to characterize a language. The
experimental results show a promising performance on the
boundary detection rate and the LID rate. 

Table 1. The precision, recall and language ID rates for
different threshold values

Harmonic Mean MeasureThreshold
value Precision

Rate
Recall
Rate F

LANGUAGE
ID RATE(%)

1.24 0.58 0.59 0.58 74.5
1.22 0.55 0.62 0.58 74.9
1.20 0.52 0.73 0.61 75.5
1.18 0.50 0.81 0.62 75.8
1.16 0.49 0.85 0.62 75.9
1.14 0.48 0.90 0.63 76.2
1.12 0.42 0.93 0.58 76.1
1.10 0.39 0.95 0.55 76.1
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