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ABSTRACT

In this work we present a computationally efficient strategy for
setting a priori thresholds in an adaptive speaker verification sys-
tem. Our motivations are two-fold: one is to eliminate the ex-
ternally pre-set overall system thresholds and replace them with
automatically-set internal thresholds conditioned by a target FA
rate and calculated at runtime, and the other is to counter the verifi-
cation score shifts resulting from online adaptation. Our approach
entails calculating the trajectory of the score threshold as a func-
tion of 1) length of the password, 2) target FA, and 3) the number
of training frames in the speaker model. The solution is successful
at both achieving target FA rates and keeping the FA rate constant
during online adaptation. Furthermore, it is algorithmically sim-
ple and requires negligible computational resources. The thresh-
old function is calibrated on a Japanese database and experimental
results are presented on 12 databases in four different languages.

1. INTRODUCTION

Setting thresholds appropriately for a speaker verification appli-
cation is a challenging task. If there is a mismatch between the
development test in the lab and the real world test material, the
effective operating point of the fielded application could be differ-
ent than expected. Furthermore, the customer’s desired operating
point may not be the same as the pre-set threshold. For example,
a financial application may need to operate in the “high security”
region (lower FA rate, higher FR rate) whereas a voice portal may
choose to operate in a “high convenience” zone (higher FA rate,
lower FR rate). Obviously, a one-size pre-set threshold would not
fit all applications.

One of our motivations in this work is to allow the user to
set the operating point for the application according to the desired
security level. A second motivation for this exploration is to im-
prove the functionality of online speaker adaptation [2, 3]. Adap-
tation techniques have long been known to improve accuracy both
in speech and speaker recognition. The gains are particularly sig-
nificant for speaker recognition, where a claimant model must be
created from little enrollment data. As a side-effect of online adap-
tation, undesirable score shifts in both speech and speaker recogni-
tion have been observed [3, 8]. This side-effect can be particularly
problematic in speaker verification, because as the impostor scores
increase, the probability of adapting and corrupting the claimant
models on impostor data also increases.

�The first author performed the work while at Nuance Communications.

In previous work [7] we presented an algorithm to address the
issues above. Even though highly optimized, it proved too compu-
tationally expensive for an online real-world system. Furthermore,
when calibration data lexically differed from the test material, the
performance suffered. This work presents a new algorithm with
negligible computational cost which is also robust to the phonetic
content of the password.

In Section 2 we discuss our approach. In Section 3, we discuss
the lessons learned from studying the data. Section 4 includes the
details of the calibration. In Section 5 we present the experimental
results on databases in four languages. Conclusions and future
work are discussed in Section 6.

2. THE APPROACH

There are various approaches to setting speaker dependent thresh-
olds in speaker verification [9, 5, 7]. Thresholds may be set to
either optimize the overall equal error rate (EER) and/or set the
operating point of the system for a certain FA rate1. For fielded ap-
plications, the security level of the system, or FA rate, is of utmost
importance. Our goal is to calculate internal thresholds automati-
cally so that the system operates at the specified FA rate.

Our old approach was a score normalization approach based
on ZNORM [4]. The basic idea was to normalize the verification
score using the mean and standard deviation of the score distri-
bution of the impostor attempts. A set of waveforms were pre-
selected and stored for the calculation of impostor distribution
score statistics. To set the threshold, the z-score corresponding
to the desired FA rate was subtracted from the normalized score.
This approach suffered from two problems: 1) although the nor-
malization step was very quick, the computational cost associated
with calculating the scores of the impostor score distribution was
large. This cost was compounded by the system being adaptive and
the models potentially changing, and hence having to recalculate
the impostor population scores after every adapted true speaker at-
tempt; 2) the second problem was that if the lexical content of the
impostor data differed from the actual password data, the popula-
tion statistics were affected, and the predictability of FA suffered.
Other normalization approaches such as Hnorm [1] and Tnorm [6]
are similarly problematic, as computationally they are too expen-
sive when combined with online-adaptation. To get away from
these two problems, we tried an approach which would not be de-
pendent on the fine details of the speaker model which are most

1Given the scarcity of true speaker data, it is often challenging to set
the threshold according to the FR rate.
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affected by the lexical content of the passwords.
The new approach is based on the simple observation that as

the speaker model gets adapted on more data, the scores of both
true speakers and impostors increase. To keep the FA rate constant,
therefore, the threshold must be increased. If 1) the score thresh-
old could be expressed as a parametric function of the amount of
adaptation data (asserted as the number of claimant training frames
in the speaker model) and target FA rate, and 2) such a function
could be ported from one database to another, we could have a
simple way of estimating thresholds. This is the main idea of this
algorithm, which we call Frame Count Dependent Thresholding,
or FCDT.

Fig. 1. Our hypothesis is that the threshold could be expressed
as a function of two parameters: number of training frames in the
speaker model (NF) and the Target FA rate (TFA).

Figure 1 is a schematic depiction of the hypothesized parame-
terized model. The first step is to verify this hypothesized relation-
ship between Threshold, NF, and TFA in a couple of databases.
Next, the function should be parameterized on one database and
applied to another to see if FA target rates can be achieved both
before and after online adaptation. In the sections below, we dis-
cuss the verification of this hypothesis (Section 3), calibration of
the parametric function (Section 4), and experiments on multiple
databases (Section 5).

3. STUDYING THE DATA

3.1. Is Threshold a Function of FA and Frame Count?

For the purposes of calibration, we chose an in-house Japanese
digits database, which had enough speaker data for gradual adap-
tation. A GMM system (described in [10]) was used. 6,477
speaker models were trained on three repetitions of eight-digit
passwords. The average duration of the password was 2.5 seconds.
The speaker models were adapted, in a supervised fashion, on one
speaker utterance at a time and testing was done on the models
after every adaptation step using a fixed held out evaluation set.
Figure 2 shows how the the score threshold has to be increased
in order to keep the FA rate constant as the speaker models are
adapted. The trends look promising and the function can easily be
parameterized with a second order polynomial of two parameters.

We then attempted to confirm this observation on another
database. A similar experiment on a Canadian French Text
database was set up. The results showed that the increase in thresh-
old, as adaptation occurs, is not as monotonic and well defined as
in Figure 2. This can be best observed by concentrating on the
FA=1% curve on Figure 3. were similar, except for the curious
appearance of a bi-modal distribution. As we can see in figure 3,
there is a plateau at about 300 and again around 1200 frames. We
attempted to explain the abberations by bugs in our experiments.
The evidence, however, prevailed when another database (this time

Fig. 2. The graph shows the growth of threshold after online adap-
tation for various FA rates. As hypothesized, threshold appears
to be well predicted by the two hypothesized parameters, namely,
number of training frames in the speaker model, NF (x-axis) and
the Target FA rate (TFA) (%TFA in legend).

UK English text) showed the same trend. Are these two parame-
ters not sufficient to predict the threshold? If so, what else is the
threshold dependent on?

Fig. 3. The Canadian French Text database shows a bi-modal dis-
tribution, suggesting that threshold is dependent on (at least) one
more parameter.

3.2. The Missing Parameter: Password Length

The answer is simple: it is well known that the raw verification
performance (and descriminative power of verification) degrades
when the password gets shorter; the implication on our algorithm
is that to maintain a fixed FA rate, we have to increase the thresh-
old. As expected, we discovered that the Japanese digits dataset
was fairly uniform in terms of password length for all models (8-
digit strings), whereas the other two tested text databases both have
one group of short and one group of long passwords. This differ-
ence in password length appears in Figure 3. At 200 frames on
the x-axis, we see the threshold increase for all the short-password
models. At around 400 frames, the increase for the short set starts
to plateau. At around 900 frames, we see the rising slope for the
long-password models. By this point, the short password mod-
els have run out of adaptation data, or if still being adapted, the
threshold increase has saturated.

4. CALIBRATION

We used the Japanese text and digit database (which have multiple
password lengths) for calibrating the parameters of the threshold
function. 10,314 speaker models were trained on three repetitions
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of either a digit or a text password. Supervised adaptation was
performed on the speaker models using at least seven more pass-
word tokens. Impostor testing was done after each adaptation step
to generate the calibration data. We divided the password length
region between 0 and 700 frames into 8 pass-length bins, shown
as separate lines in Figure 4, such that each bin contained between
120K and 196K impostor trials. The mean password lengths are
1.1 and 2.5 seconds for short and long passwords respectively.

Fig. 4. The figure shows the normalized histogram of number
of impostor attempts for each pass-length bin (in frames) in the
database.

Note that each pass-length bin contained impostor trial data
points tested on a given speaker model after none, one, ..., and n
adaptation steps. Next, the impostor trials in each pass-length bin
were divided into 10 sub-bins, based on the number of training
frames in the speaker model (NF). For each sub-bin, we calcu-
lated the average number of training frames (ANF) and the aver-
age password length (APL). Figure 5 shows the two dimensional
space spanned by these two parameters for all the sub-bins. The
sub-bins on the right edge seemed questionable as they did not
have much wider spans and were excluded. To maximize model-
ing efficiency, we preferred better coverage of the 2-D space, so we
replaced ANF with ANF/APL. For each sub-bin we calculated the
following key parameters: Threshold to achieve target FA (T), Tar-
get FA (TFA), Average Password Length (APL), Average Number
of Training Frames in the Speaker Model divided by the Average
Password Length (ANF/APL). We then modeled the threshold by
fitting a second order polynomial of three parameters (total of 10
free coefficients) as T = G(TFA, ANF, ANF/APL).

Figure 6 shows the fit for TFA of 1% in the three dimensional
space. Visual inspection of the fits for all TFA data (not shown)
indicates a reasonably good fit of the model to the data.

5. EXPERIMENTS

As mentioned in Section 4, the calibration of the parameters was
done using a Japanese digits and text database. We then applied the
parameterized equation to 12 databases in four languages (Amer-
ican English, UK English, Canadian French, and American Span-
ish).

As mentioned, one goal of this work was to set thresholds for
a desired FA rate without requiring tuning. Considering the level
of challenge of this task, our goal was to be within a reasonable
target range. The TFA parameter was set at 1/4th of the range,
specifically, lowbound + 0.25 * (upbound-lowbound). Table 1
shows the FA rates achieved for the goal range of [0.2-1.5%] (aim:

Fig. 5. The figure shows the two dimensional space spanned by
ANF and APL of the sub-bins. The questionable regions on the
far right edge of the distributions were excluded. To get better
distribution, we chose to use parameter ANF/APL instead of ANF
alone.

Fig. 6. The plot shows the fit of the second order polynomial to
the data set with target-FA = 1%.

0.525%) for the twelve datasets we tested. Two of the databases
overshot (American English Text 1 and 2) and two barely under-
shot (Canadian French Digits, and just barely, American Spanish
Digits) the goal. The other eight tested databases were within the
target range. These databases covered a wide variety of applica-
tions, lexical content, and channel conditions.

Table 1 also compares the EER performance of the baseline
system with FCDT. The overall EER for the system can change
since the decision threshold (or subtraced bias) for each speaker
model is set independently and is different. The goal of this work
was to achieve better prediction for FA rates and not to improve
EER. For some databases we observe an EER improvement (max:
+25%), and for some, a degradation (max: -15%). Overall, the
EER effect can be considered a wash, which considering the goals
of this work, is satisfactory.

It is desirable to meet the FA targets in all security levels. Ta-
ble 2 shows the FA rate for various security level ranges for one
of the English digit databases (for space concerns, the other eleven
datasets are not shown). In all except for the least secure region,
the target FA range is met. Even for that region, the achieved FA
is reasonable.

Finally, one main motivation for this work was to keep the
growth of FA rates after adaptation in check. Figure 7 shows the
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DB TS/IM FA EER EER Pct.
trials FCDT FCDT Base Imprv

EA Dig1 0.8K/0.8K 0.53% 5.79% 7.76% 25%
EA Dig2 38K/38K 0.68% 4.74% 5.20% 9%
EA Dig3 1.2K/25K 0.42% 2.86% 2.54% -13%
EA Dig4 3K/10K 0.40% 4.03% 3.75% -7%
EA Txt1 38K/38K 2.16% 7.25% 7.80% 7%
EA Txt2 2K/15K 1.97% 3.15% 2.82% -12%
EUK Dig 5K/5K 1.13% 1.92% 2.22% 14%
EUK Txt 13K/13K 1.20% 5.61% 5.97% 6%
FR Dig 4K/4K 0.11% 3.52% 3.05% -15%
FR Txt 27K/27K 0.41% 7.36% 7.22% -2%
SP Dig 50K/50K 0.17% 3.38% 3.62% 7%
SP Txt 49K/49K 1.08% 4.36% 5.10% 15%

Table 1. Table shows FA and EERs for 12 digits and text databases
for FCDT, and EERs for the baseline system. The target FA range
was [0.2-1.5%]. TS/IM is the number of true speaker and impostor
trials. In the database (DB) column, ’EA’ stands for American
English, ’EUK’ is UK English, ’FR’ is Canadian French, and ’SP’
is American Spanish.

Security Target Target Actual
Level Range FA FA

VERY-HIGH [0.1-0.2%] 0.125% 0.10%
HIGH [0.2-1.5%] 0.525% 0.40%

MEDIUM-HIGH [1.5-3.0%] 1.875% 1.57%
MEDIUM [3.0-5.0%] 3.5% 3.10%

MEDIUM-LOW [5.0-7.0%] 5.5% 4.83%

Table 2. Table shows actual FA rates for various target ranges for
English Digits 4, with 3K/10K of claimant/impostor trials.

change in FA rate after multiple iterations of unsupervised online
adaptation for the FCDT and the baseline system. Test data is En-
glish digits with 10K/10K of claimant/impostor trials. The adap-
tation data is uniformly distributed, such that all speaker models
have the same probability of being adapted, and the impostor adap-
tation attempts are roughly 10% of the total. We see that the FA
rates of the baseline system more than double, whereas the FCDT
algorithm updates the overall threshold successfully to keep the
FA rates relatively constant.

For due diligence, we also compared the FCDT algorithm with
our previous approach presented in [7]. The current algorithm per-
formes similarly in maintaining a constant FA rate after adaptation,
and outperforms the previous one in achieving the target FA rate
and not degrading the EER. And finally, the current algorithm is
computationally far simpler and more efficient than its previous
incarnation.

6. CONCLUSION

In this work we presented a computationally efficient strategy
for setting a priori thresholds in an adaptive speaker verification
system. We had two main motivations: 1) to eliminate the ex-
ternally pre-set overall system thresholds and replace them with
automatically-set internal thresholds calculated at runtime; and 2)
to counter the verification score shifts resulting from online adap-
tation.

Fig. 7. Plot shows FA rate growth after adaptaion. We see that
the FCDT algorithm controls the growth of FA by updating the
thresholds effectively. Test data is English digits, with 10K/10K
claimant/impostor trials.

We learned that score threshold can be modeled as a function
of three parameters: 1) Goal FA, 2) password length, and 3) num-
ber of training frames in the speaker model. We estimated the pa-
rameters for a second order polynomial (10 free coefficients) on a
Japanese database and then successfully applied it to 12 test sets in
four languages (American English, UK English, Canadian French,
and American Spanish).

Although there was significant difference between the calibra-
tion and test material, the estimated threshold function appeared
to be portable. Performance in the desired FA rate region was
achieved for eight out of the 12 test cases. Considering how chal-
lenging it is to set the operating point without application-specific
tuning data, the achieved results are considered very satisfactory.

We also demonstrated how this algorithm succeeds in main-
taining a constant FA rate after multiple rounds of online adapta-
tion. Finally, the algorithm neither degrades nor improves the EER
consistently, as expected.
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