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ABSTRACT

In this paper, Speaker Adaptive Training(SAT) which reduces
inter-speaker variability and Eigenspace-based Maximum Likeli-
hood Linear Regression (EigenMLLR) adaptation, which takes ad-
vantage of prior knowledge about the test speaker’s linear trans-
forms, are combined and developed. During training, SAT gener-
ates a set of speaker independent (SI) Gaussian parameters, along
with matched speaker dependent transforms for all the speakers in
the training set. Then a set of regression class dependent Eigen
transforms are derived by doing Singular Value Decomposition
(SVD). Normally during recognition the test speaker’s linear trans-
forms are obtained with MLLR. In this work, the test speaker’s
linear transforms are assumed to be linear combination of the de-
composed Eigen transforms. Experimental results conducted on
large vocabulary conversational speech(LVCSR) material from the
Switchboard Corpus show that this strategy has better performance
than ML-SAT and significantly reduces the number of parameters
needed(an 87% reduction is achieved), while still effectively cap-
turing the essential variation between speakers.

1. INTRODUCTION

Although typical state-of-the-art large vocabulary conversational
speech recognition (LVCSR) systems achieve high performance,
these systems can be improved upon by adapting the models to
the characteristics of a particular speaker using a small amount
of adaptation or enrollment data. Adaptation is very important to
compensate for the differences between the speech on which an
ASR system was trained and the speech which it has to recog-
nize. The most popular model-based adaptation techniques can be
grouped into three families depending on the application[1]: Max-
imum a posteriori (MAP) family, linear transformation family in-
cluding MLLR [2], and speaker clustering based family including
CAT[3] and eigenvoice [4, 5].

In MLLR, a transform is applied to the Gaussian model param-
eters in the estimation of the state independent observation distri-
butions in order to match the specific conditions of interest and
has been shown to be effective in improving the performance of
speaker independent (SI) LVCSR systems by adapting the system
to the test set. Adaptation can also be applied to the speakers in
the training set to produce matched conditions with the test set,
and this is termed Maximum Likelihood (ML) Speaker Adaptive
Training (SAT) [6]. The goal of SAT is to reduce inter-speaker
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variability within the training set. SAT is an iterative estimation
procedure that generates a set of speaker independent (SI) Gaus-
sian parameters along with matched speaker dependent transforms
for all the speakers in the training set using MLLR.

Basically there are two forms of adaptation: supervised and
unsupervised. In supervised adaptation the true transcription of the
data is known and in unsupervised adaptation no reference tran-
scription is provided but it is hypothesized. This initial hypothe-
sis may contain errors which makes it difficult to reliably estimate
large number of parameters. Moreover, supervised techniques usu-
ally perform better.

Thus in speaker adaptation(MLLR, ML-SAT) although we can
estimate a large number of transforms for any of the training speak-
ers since we have the correct transcription and adequate amount of
enrollment data, this is not the case for the test speakers (unsuper-
vised adaptation with few data). Therefore the number of trans-
forms that can be reliably estimated is limited(usually no more
than 2 transformation matrices). Furthermore the prior knowledge
about speaker variants from the training set, typically doesn’t as-
sist in the testing stages. To alleviate the problem of reliably es-
timating model parameters when there is only a small amount of
adaptation data available, Kunh et al[4] proposed an ’Eigenvoice’
approach which incorporates prior knowledge and requires a set
of speaker dependent models. Chen et al[5] introduced a rapid
speaker adaptation scheme, termed Eigenspace-based Maximum
Likelihood Linear Regression(Eigen-MLLR).

In this work, we investigated the Eigenspace based MLLR
adaptation framework along with SAT. Given that SAT is an esti-
mation procedure, aiming at reducing the inter-speaker variability
within the training set and Eigen-MLLR incorporates prior infor-
mation about the transforms from the training set we expect the
integration of these two techniques to yield improved performance
since they capture different acoustic phenomena. Thus with SAT
we generate a set of speaker independent (SI) Gaussian param-
eters along with matched speaker dependent transforms and im-
prove performance through successive iterations of parameter es-
timation. We then incorporate EigenMLLR adaptation after SAT
training. Using SVD, a set of ’canonical’ transforms, termed Eigen
transforms were obtained. During testing, new speaker’s linear
transforms are a linear combination of those Eigen transforms,
rather than obtained with MLLR. Since the number of linear co-
efficients is much less than the number of parameters in transform
matrices, the approach only requires a small amount of adaptation
data for a robust estimation. Furthermore we can use more than 2
transforms for each test speaker.
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2. SPEAKER ADAPTIVE TRAINING

Speaker Adaptive Training (SAT) [6] has been shown to be ef-
fective in improving the performance of speaker independent (SI)
LVCSR systems. For each speaker, a transformation matrix is usu-
ally applied to the mean vector of each Gaussian, because they
define major characteristics of the distributions. Covariance adap-
tation is less commonly used and its effects are less profound than
the mean adaptation[7].

Under this model the emission density of state � is
reparametrized for each speaker

� � � � � � � � � � �
as

� 	 
 � � � � �  � � � �� 	 � � � � � � � � � � �� � � � � � � � � ! " # $ % & �" � � � � � � � � ! " #
and we have

�
speakers in the training set.

To avoid introducing more parameters than can be reliably es-
timated, transformations are tied across sets of states. Here, ' ( ) *+ is
the extended speaker dependent transformation matrix , - ( ) *+ . ( ) *+ /
associated with a group of states 0 + � 1 � � 2 	 � � � 3 4

for classes3 � � � � � � � 5
and 6 �

is the extended mean vector , � 7 � � / � . The
function 0 + gives a set of mixtures belonging to the same regres-
sion class

3
.

Since the training data are collected from a population of
�

speakers, all utterances are partitioned according to speaker iden-
tity. To incorporate information about the speaker identities, we
denote by

1 8 9 :� � � � 4
, the sequence of feature vectors 
 � be-

longing to speaker
�
. The augmented state dependent parameter

set is defined as
� � 	 ' ( ) *+ � 7 � � � � �

, for all speakers
�
. Our objec-

tive is to compute the speaker dependent transforms and speaker
independent Gaussian parameters of the state dependent distribu-
tions under the ML criterion. This is done by maximizing the fol-
lowing auxiliary function:
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where L is constant independent on
�

coefficients and 
 � is the
adaptation data. The parameter update equation is:
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(2)

where we define E � 	 8  � � � � � � 	 � � :S �
J � 
 T J � �  � �

is the conditional
occupancy probability of state � at time

8
given the training acous-

tics and the reference transcription :S �
J .

2.1. Estimation of SAT Transforms

With the HMM parameters fixed, the parameter update relation-
ship of equation (2) can be expressed as:

<' ( ) *+ 9 >� @ A  >� B C) � D )
E � 	 8  � � U M

� � � � O P Q � 	 
 � � � � �  <' ( ) *+ � 7 � � � � � � R �
(3)

The gradient of logarithm of the emission density � with respect to' ( ) *+ can be found asM
� � � � O P Q � 	 
 � � � � �  � � � � � J� V 
 � = ' ( ) *+ 6 � W 6 ��

Substituting this into equation (3) it follows that the new transform
estimates <' ( ) *+ should satisfy:

>� @ A  � � J� >� B C) � D )
E � 	 8  � � 
 � 6 �� � >� @ A  >� B C) � D )

E � 	 8  � � � � J� <' ( ) *+ 6 � 6 ��
(4)

Here, the state occupancies E � 	 8  � �
are found via counts accumu-

lated for each speaker under the initial parameters 	 ' ( ) *+ � 7 � � � � �
.

2.2. Gaussian Parameter Estimation

The state independent Gaussian mean and variance parameters for
ML-SAT are estimated under the ML criterion (2), using the up-
dated values of the speaker dependent affine transforms <' ( ) *+ (4).
The parameter set is X� � 	 <' ( ) *+ � 7 � � � � �

. The derivation of the up-
date formulas involves the gradient of the reparametrized emission
density with respect to

7 �
and

� � J�
. Subsequently we solve for <7 �

and <� �
.

For brevity we provide the final update equations where the
speaker independent means are reestimated as

<7 � � YZ > ) >� B C) � D )
E � 	 8  X� � <. ( ) * �+ � � J� <. ( ) *+ [\ � J ]

> )
<. ( ) * �+ � � J� >� B C) � D )

E � 	 8  X� � V 
 � = < - ( ) *+ W �
(5)

The speaker independent variances are reestimated as

<� � � ^ ) ^ � B C) � D ) E � 	 8  X� � 	 
 _� = � 
 � <7 ( ) *� I <7 ( ) * _� �
^ ) ^ � B C) � D ) E � 	 8  X� � (6)

where <7 ( ) *� � <. ( ) *+ <7 � I < - ( ) *+ , are the new speaker dependent
means.

This derivation describes a two-stage, iterative procedure. Ini-
tially, speaker dependent transforms are estimated via equation (4),
after which speaker independent Gaussian parameters are found
via equation (5) and equation (6).

3. INTEGRATION OF SAT AND EIGENSPACE
DECOMPOSITION

This section describes how we combine the SAT and EigenMLLR
procedures. During SAT, we find each speaker’s linear transforms<' ( ) *+ from the SI model using MLLR (4) and these transforms are`

dimensional. For each regression class
3
, a supervector 0 a for

each speaker is composed and a large
` ] �

matrix b is formed,
with columns corresponding to speakers, and rows to the parame-
ters in the speaker’s transforms.

The next step is to reduce this very large matrix into a com-
pressed matrix using singular value decomposition(SVD). By do-
ing SVD according to:

b � c U 0 U d � �
(7)�

Eigen transforms ordered by eigenvalue are obtained from the
basis

c U 0 � . Typically the first few e Eigen transforms capture
most of the variation in the data. Decreasing e , the number of
dimensions retained, reduces the accuracy with which b can be
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recreated from its component matrices(usually, � �
�

�
�

).
Suppose that � Eigen transforms for each regression class�

have been obtained in training stage: we denote them by
� � � ��

� 	 
 � � � �    � � . The basic problem then becomes how
to exploit the adequate amount of data in the training set, in or-
der to obtain robust estimates for the test speakers’ transforms.
To achieve this we employ prior knowledge of what the estimates
might be. Thus during recognition the adapted transform for a
new test speaker is constrained to be located in the space spanned
by those � Eigen transforms according to:

�� � � � 
 �

�
� �

�
� � � ��

� � � ��


(8)

Finally the transformed test speaker mean is given by:

�� � 
 �� � � � � � 
 �

�
� �

�
� � � ��

� � � �� � � 
(9)

The maximum likelihood estimation for the parameters
� � � ��is done by using the auxiliary function (1). Since the Eigen trans-

forms are orthogonal to each other, it is assumed that the
�

coef-
ficients to be calculated are independent to each other. By substi-
tuting equation (9) into the auxiliary function (1) and setting the
partial derivatives w.r.t.

� � � �� to zero, the following equations are

obtained, ignoring all terms independent of
� � � �� :

� � � ��

 �

�
� �

�
� � � �� � � � �� � � � 	 
 � � � �    � � (10)

where the accumulators
� � � �� and � � � �� � � are given by

� � � ��

 �� � �

� � �
��� �

�
� � � � � � �  � � ! " �� � � � � �� � � �

(11)

� � � �� � � 
 �� � �
� � �

��� �
�

� � � � � � � � � � � �� � �
� � ! " �� � � � � �� � �

� 
(12)

It’s obvious that matrix � � � � 
 � � � � �� � � �
is symmetric. And the� transform weights are obtained by solving � linear equations� � � � 
 � � � � � � � � . The computational requirement is similar to

standard MLLR, plus the overhead in estimating (10).

4. EXPERIMENTAL RESULTS

4.1. System Description

The experimental results in this section are conducted on mate-
rial from the Switchboard Corpus which is a database of sponta-
neous dialogue, with no pre-selected topic, among English speak-
ers. The system is a speaker independent continuous mixture den-
sity, tied state, cross-word, gender-independent, triphone HMM
system with

� 
 � # �
speakers. The baseline acoustic models

used as seed models for our experiments were built using HTK [8]
from 16.4 hours of Switchboard-1 and 0.5 hour of Callhome En-
glish data. This collection defined the development training set for
the 2001 JHU LVCSR system [9]. We have used only 17 hours of
data from 209 speakers for computational reasons, we expect sim-
ilar behavior with bigger systems. The speech was parameterized

into 39-dimensional PLP cepstral coefficients with delta and ac-
celeration components. Cepstral mean and variance normalization
was performed over each conversation side.

The acoustic models used cross-word triphones with decision
tree clustered states [8], where questions about phonetic context
as well as word boundaries were used for clustering. There were
4000 unique triphone states with 6 Gaussian components per state.
To define the regression classes and assign the Gaussians, we em-
ployed the HTK regression class tree implementation [8].

Lattice rescoring experiments were performed using the
AT&T Large Vocabulary Decoder [10], with a 33k-word trigram
language model provided by SRI [11]. The recognition tests were
carried out on a subset of the 2000 Hub-5 Switchboard-1 evalua-
tion set (SWBD1) and the 1998 Hub-5 Switchboard-2 evaluation
set (SWBD2). The SWBD1 test set was composed of 866 utter-
ances consisting of 10260 words from 22 conversation sides, and
the SWBD2 test set was composed of 913 utterances consisting of
10643 words from 20 conversation sides. The total test set was 2
hours of speech.

Our system was seeded from a well trained MMIE model. Our
approach is based on the MMI training procedure developed by
Woodland and Povey [12], but we used triphone lattices on the
training data.

4.2. Eigen-MLLR performance without SVD

Initially we conducted a series of experiments to compare MLLR
and Eigen-MLLR with different number of transforms. These ex-
periments are shown in Table 1. MLLR and Eigen-MLLR were
performed with a MMIE trained model (39.9%,49.7%). We also
keep all the ’eigen-values’ thus the size of vector

� � � � 
 $ � � � �� % is� 
 � 
 � # �
parameters for Eigen-MLLR for each regression

class
�
. The purpose of this experiment is to state the baseline and

compare Eigen-MLLR and standard MLLR for different number
of transforms without applying SVD.

Using multiple regression classes with MLLR, resulted in sub-
optimal performance which is not surprising given the unsuper-
vised nature of the adaptation, the high word error rate and the
large number of parameters that have to be estimated given our
limited adaptation data. On the other hand in Eigen-MLLR, the
speaker’s linear transform is a linear combination of the decom-
posed Eigen transforms computed in the training set. As the num-
ber of transforms increases the WER does not increase, which
is a consequence of integrating prior knowledge about the trans-
forms from the training set(enough data, low error rate, supervised
mode). We get our best result with 4 transforms (35.9%,46.0%).
In parentheses the number of parameters estimated for each test
speaker is shown under both methods. Since we are interested in
the number of parameters used, we present the number of trans-
forms rather than thresholds for regression classes trees

MLLR Eigen-MLLR K=209
#TRANS SWBD1 SWBD2 SWBD1 SWBD2

2 36.1(2*1600) 46.8 36.6(2*209) 46.6
4 37.0(4*1600) 47.9 35.9(4*209) 46.0
6 38.0(6*1600) 49.1 35.7(6*209) 46.4

Table 1. Word Error Rate (%) of systems with MLLR, Eigen-
MLLR evaluated on Swbd1 and Swbd2 test sets.

I - 359

➡ ➡



4.3. Eigen-SAT performance

Here we investigate the SAT and EigenMLLR procedures as de-
scribed in the previous section. Table 2 shows the performance
of the ML-SAT and Eigen-SAT estimation procedures initialized
with a MMIE trained model. In this implementation of ML-SAT,
the transformation parameters and the Gaussian mean and variance
parameters, are estimated at each iteration via Baum-Welch proce-
dure, over the transcribed training data. We have selected 2 and 4
regression classes based on the results in Table 1. We have done 5
iterations of Speaker Adaptive Training. Again as in MLLR adap-
tation, ML-SAT with 4 regression classes yields worse results. The
experimental results show that Eigen-SAT (34.4%,44.7%,#4) gives
better performance than ML-SAT (34.8%,45.1%,#2). Furthermore
Eigen-SAT uses only

� � �
of the parameters that ML-SAT is us-

ing(4*209 vs 2*1600 parameters).

ML-SAT Eigen-SAT K=209
#TRANS SWBD1 SWBD2 SWBD1 SWBD2

2 34.8(2*1600) 45.1 34.4(2*209) 45.0
4 35.2(4*1600) 46.3 34.4(4*209) 44.7

Table 2. Word Error Rate (%) of systems with ML-SAT, Eigen-
SAT evaluated on Swbd1 and Swbd2 test sets.

Finally we carried out a series of experiments by using the first
� �

�
Eigen transforms that capture most of the variation in the

data. Results are shown in Table 3. We see that we get similar
performance with Eigen-SAT( � � � � �

) from Table 2, by using
even fewer parameters, e.g Eigen-SAT( � � � � �

, #4). These re-
sults show that SVD has been able to find canonical transforms
since only � (significantly smaller than

�
) bases are required in

the proposed approach. We achieve even bigger dimensionality
reduction(4*100 vs 2*1600 parameters) and make the whole pro-
cedure more robust and efficient.

Eigen-SAT K=100 Eigen-SAT K=75
#TRANS SWBD1 SWBD2 SWBD1 SWBD2

2 34.7(2*100) 45.4 34.9(2*75) 45.8
4 34.4(4*100) 44.8 35.0(4*75) 45.7

Table 3. Word Error Rate(%) of systems with Eigen-SAT, evalu-
ated on Swbd1 and Swbd2 test sets by varying K(most significant
eigenvalues).

5. CONCLUSIONS & FUTURE WORK

The main concern of this work is rapid adaptation in LVCSR,
where a limited amount of adaptation data is available. We pro-
posed the integration of SAT and Eigen-space based adaptation
which: i) reduces inter-speaker variability within the training set
and ii) utilizes the training set transforms during testing via Eigen-
space decomposition. Since the number of linear coefficients is
much less than the number of parameters used in conventional
MLLR, the approach iii) only requires a small amount of adapta-
tion data for a robust estimation and iv) makes estimation of more
than two regression classes feasible.

The experimental results confirm the effectiveness of Eigen-
MLLR/Eigen-SAT in achieving word error rates superior to those
obtained with other currently popular MLLR/ML-SAT adaptation
techniques. The Eigen-matrices can effectively capture the inter-
speaker variation and achieve better performance by using only

� � �
of the parameters (Table 3, � � � � �

, #4), that conventional
ML-SAT is using.

Our goal is to incorporate Eigen-space transforms into Seg-
mental Minimum Bayes Risk (SMBR) estimation [13]. We note
that due to the great diversity of ASR errors in large vocabulary
tasks, we expect the primary challenge to be robust estimation
from sparse data. Eigen-space transforms described in this work
are an ideal solution for tackling the sparsity problem in speaker
independent systems because they incorporate prior knowledge
from the training set.
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