<

EIGEN-MLLRS APPLIED TO UNSUPERVISED SPEAKER ENROLLMENT
FOR LARGE VOCABULARY CONTINUOUS SPEECH RECOGNITION

Xavier L. Aubert

Philips Research Laboratories
Weisshausstrasse 2, 52066 Aachen, Germany
xavier.aubert @ philips.com

ABSTRACT

The concept of Eigen-MLLRs [1, 2], a variant of the Eigen-
Voice method, is applied to unsupervised speaker enrollment in a
large vocabulary CSR system. The emphasis is on fast adaptation.
Two ways of estimating multiple Eigen-MLLR transformations
are introduced, either joint or separated with respect to the Eigen-
MLLR vector space. The first case allows multiple transforms to
be robustly estimated from sparse data while the second achieves
more accurate adaptation when more samples become available.
The first decoded words spoken by a new test speaker are used
to adapt the speaker-independent HMM means. The impact of
this new enrollment algorithm is evaluated over a large real-life
database dealing with professional medical transcriptions. Signif-
icant reductions of word-error-rates are achieved with less than 10
seconds of enrollment speech and without any supervision.

1. INTRODUCTION

An important question inherent to ASR adaptation techniques is
how to structure the information contained in the training data,
such that this prior knowledge can be efficiently exploited during
decoding to cope with sources of variabilities like channel or en-
vironmental changes and outliers regarding voice, speaking mode
or native and non-native accents.

In 1998, the Eigen-Voice method has been introduced for fast
acoustic adaptation [3]. The key point lies in a specific organiza-
tion of the acoustic-phonetic knowledge drawn from the training
data such that a new speaker can be characterized with a small
number of parameters in this “prior space”. The Eigen-Voice tech-
nique is based on a principal component analysis (PCA) in the
hyper-space of the HMM density means. This vector space is
obtained by concatenating all acoustic model means into a mean
“super-vector”. An unknown speaker can be “projected” on the
PCA orthonormal basis leading to speaker-dependent (SD) eigen
coefficients. An adapted acoustic model is then easily obtained by
linearly combining the eigen mean vectors with these SD weights.
Though the dimension of the mean super-vector may reach a mil-
lion or more in a large ASR system, a few tens of eigen coeffi-
cients might already provide an appropriate combination to cast a
new speaker in the eigen mean space. The main drawback of this
approach is its huge memory needs to store the mean super-vector
basis as well as the significant computational complexity to get the
matrix of the system determining the eigen-coefficients [4].

An alternative consists in applying the same PCA principle to
the MLLR space rather than directly to the HMM means [1, 2].
MLLR [5] is a very popular and effective adaptation technique

0-7803-8484-9/04/$20.00 ©2004 IEEE

I-349

which applies affine transformations on groups of mean vectors
tied in so-called regression classes. In the Eigen-MLLR approach,
the vast number of mean vectors characterizing a speaker is re-
placed by a few matrices and offset vectors such that the dimen-
sion of the super-vector is reduced by more than a factor of 100
in a large system. Moreover, a clever implementation makes the
estimation of Eigen-MLLR coefficients suitable for fast adapta-
tion. Another interesting feature is that Eigen-MLLR fits very
well with the speaker adaptive training (SAT) framework intro-
duced in [7], where MLLR transformations are used to normalize
the SD acoustic distributions of the training speakers towards a so-
called “golden-speaker” or canonical model. It is known, however,
that SAT models are not better if not subjected to careful adapta-
tion when processing a new speaker [9]. Lastly, the Eigen-MLLR
approach is closely related to the transform-based cluster adap-
tive training (CAT) of [10], both methods differing mainly in the
initialisation stage. PCA yields a larger number of Eigen-MLLR
modes compared to the number of clusters typically obtained with
agglomerative techniques.

In the present work, Eigen-MLLRs are applied to unsuper-
vised short-term adaptation towards a fast and robust enrollment
of new speakers for use in large vocabulary systems. The empha-
sis is on using multiple class MLLRs which are known to yield
improved adaptation compared to single MLLR, at least in su-
pervised mode with sufficient enrollment data. The next section
presents the main lines of the mean adaptation framework which
has been adopted, followed by the description of our Eigen-MLLR
algorithm. Two ways of dealing with multiple MLLRs are pre-
sented, either by joining or by keeping separated the individual
transforms with respect to the Eigen-MLLR vector space. The
last section is devoted to the experimental part, by first validating
this new algorithm for supervised adaptation and next applying it
to unsupervised speaker enrollment. The task concerns automatic
transcriptions of medical reports dictated spontaneously over long-
distance telephone lines from all over the US [11].

Based on the first decoded words, the Eigen-MLLR coefficients
are estimated and used to adapt the original SI means to the cur-
rent speaker. The whole process is unsupervised and automatic,
introducing only a minor delay at the beginning. Compared to the
word error rate (WER) of the baseline without enrollment, sig-
nificant improvements are observed with less than 10 seconds of
adaptation speech, averaged over 22 test speakers, all US natives
but one. Individual gains range between 1% and 20% relative with
respect to the baseline driven by gender-dependent models. Fur-
ther additional gains are expected when combined with SAT and
followed with long(er) term adaptation techniques.
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2. MEAN ADAPTATION FRAMEWORK

Let d denote the dimension of the acoustic space, M the total num-
ber of densities in the acoustic mixture model and m the index of
a density with 1 < m < M. Let o; be the observation vec-
tor at time ¢ and F' the total number of adaptation centi-second
frames such that ¢ € [1, F']. Let r be the index of one among R re-
gression classes where each MLLR affine transformation is a full
(d x d) matrix A, with an offset vector b,, 1 < r < R. The
m_th speaker-independent mean vector is written as pS: and be-
longs to the regression class 7 = r(m). With these notations, the
mean “‘super-vector” of the Eigen-Voice method is a M - d vector
v = {ui,pud,..p3i}T. The Eigen-MLLR super-vector is ob-
tained by concatenating the offset-vector with the matrix columns
givingad- (d+1) vector T, = {brT, AMT, AT,2T, ...Ar,dT}T
for a single transformation. The MLLR super-vector for multi-
ple transforms is obtained by concatenating the former 7, vec-
tors into a R - d(d + 1) vector 7 = {T{,TF,.. T, .. TE}".
The orthonormal eigen-vectors generated by PCA are written as
v; for the Eigen-Voices and 7; for the Eigen-MLLR basis with
1 <7 < N where N, the eigen-space dimension, depends on the
number S of training speakers. To select a part of a super-vector,
7; will be used to denote the parameters of the r_th regression class
in 7; and similarly for v™ = .

For the efficient implementation of the Eigen-MLLR algorithm,
affine transformations must be expressed in terms of super-vectors
T, rather than with A, matrices. By associating a rectangular
d x d(d + 1) matrix D(u) to the mean vector p (see figure [1] at
the paper end), the equivalent “vectorized” form is achieved :

A, xp+b, =D(u)*T, (1)

D(u) is a diagonal-block sparse matrix whose non-zero elements
are at (i, j) index pairs such that j modd = 4, the D; ; value being
the k_th component of p with k = trunc (j/d) and p[0] = 1.

In this framework, the enrollment step consists in estimating an
unknown parameter vector & such that the cumulated distance be-
tween the observed vectors and the adapted means fi,, (t) which
depend on «, is minimized :

F M
MIN > v llos = ey (@)1 @
07 t m

For simplicity, the variances have been assumed to be constant
over the densities. Likewise, maximum likelihood (ML) estima-
tions will be considered under Viterbi approximation assuming
that v, (), the posterior probability of a density m at time ¢, is ei-
ther O or 1 such that one single density m(t) is associated to each
observation o;. Depending on the functional form of fi,,(s)(c),
several cases can be considered and their differences made clear :

1. Standard MLLR: ﬁm(t) = Ar(m(m * lj’frf.(t) + br(m(t))y
2. Eigen-Voices: flmt) = D5y aivzn(t), withn < N
3. Eigen-MLLRS : fip(s) = D(qui(t)) «{Xr, aiTi"(m(t))}

In the standard MLLR case, the unknown vector « has a number of
R -d(d + 1) free parameters as @« = {A,,b,; r = 1,...R} while
in the two other cases « is just the vector of eigen-coefficients of
dimension n < N. This paper deals with the last case only.

3. EIGEN-MLLR ALGORITHM

3.1. PCA in MLLR Vector-Space

For each training speaker s,1 < s < S, a set of MLLR transfor-
mations is computed using standard ML estimation and processed
into a super-vector 7 (s) of dimension R - d(d + 1). PCA is carried
out on the set of S MLLR super-vectors using a Gram-Schmidt
orthonormalization followed by an eigen value decomposition [4].
The Eigen-MLLR basis is provided by the eigen-vectors sorted
on decreasing eigen values. Note that PCA is applied on “cen-
tered” vectors, the averaged MLLR super-vector 7 being sub-
tracted prior to orthonormalization. The outcome is a sorted basis
of delta MLLR eigen-vectors 73 , 1 < ¢ < N where N =5 —1
when no speaker-clustering is performed.

3.2. ML Estimation of Linear Decomposition Coefficients

Given a sequence of observations 01, ...0¢, ...or produced by an
unknown speaker, the Eigen-MLLR coefficients a;, 1 < ¢ < m are
obtained by solving a set of n linear equations derived from equa-
tion (2) coupled with the mean adaptation rule for Eigen-MLLRs,
taking account of the “centering” step :

n
fim(ty =D (i) * 7™+ et/ ™ 1<t < F 3)
i=1

The linear equations are obtained straightforwardly by inserting
(3) into (2), expanding the L2 norm as a scalar product and setting
the partial derivatives 0(.)/0a;, 1 < j < n to zero. The esti-
mated «; coefficients serve to generate a set of affine transforms,
by linearly combining the MLLR eigen-vectors 7;, which are fur-
ther used to adapt all ST mean vectors to the new speaker.

3.2.1. Joint Handling of Multiple Regression Classes

In the base Eigen-MLLR algorithm, multiple regression-classes
are processed in one single super-vector, the individual transfor-
mations 7, being concatenated as explained in section 2. This
defines the joint handling of multiple MLLRs which implicitly as-
sumes intra-speaker correlation among respective transforms [6].
Note, that this is not the usual way of computing multiple MLLRs
that are kept independent and separately estimated [S]. This leads
to a single system of n linear equations in o; for¢ =1, ...n:

F
ST 6 D) ) = @)
‘v i T i (m(¢))
t m
D> o [N D) D) i ",
toJ
where 6; = o; — D(ps!) 7 (™) to account for centering. Upon

grouping the observations mapped to the same regression class r
which is noted o, — r(m(t)), leads to the equivalent system (5) :

R n R
ZXT(T) Tir(m(t)) — Zaj z [T]T(m(t))]T Z(r) 7.Z‘(m(t)),
r J 'r

where the auxiliary vectors X (r) and matrices Z(r) are defined as:

ot —r(m(t))

X(r)= Z

t

[6:" D(psiiy)]”, of dimension d(d + 1),

ot —r(m(t))

Zir)= )

t

8 T s
D(pirnty) D(pmm(sy) of order d(d + 1)
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The solution of equation (5) is given by & = B™* * A where
R R
Bi; :Z[7.;(m(t))]TZ(T)TiT(m(t))’ Aj :Z x7T (T)T]T(m(i))
T T

It shows that the coefficients of the linear system for a are given
as a sum over the contributions of the respective regression classes
when using multiple MLLRs jointly, and the solution is achieved
with one single matrix inversion of order n, independently of R.

3.2.2. Separated Handling of Multiple Regression Classes

For handling multiple MLLR transforms separately, the PCA pre-
processing has first to be run R times on single-MLLR super-
vectors of dimension d(d + 1), thus providing a specific Eigen-
MLLR orthonormal basis for each regression class in its respective
vector space. Next, a linear system has to be set up for each param-
eter vector ", 1 < r < R but this is straigthforward based on the
previous equations. Indeed, each regression-class transformation
is obtained with o” = (B*)~! x A" where the system coefficients
are simply given by
B = [Tjr(m(t))]TZ(r) T:(m(t)), A;=X"(r) ij(m(t))

Apart from having to invert R matrices of order n, the main com-
puting costs implied by the calculations of the system coefficients
are identical to the case of handling multiple MLLRs jointly. In the
present case, the regression-class “counts” are just kept separated
and fed into specific linear systems. This offers the possibility of
using a different number of eigen-modes n for each regression-
class, for example, by making n(r) dependent on the number of
observations collected for that class. Likewise, this suggests possi-
ble interpolation schemes if some regression-class gets (too) sparse
data.

4. EXPERIMENTAL RESULTS

4.1. System and Task Description

The baseline is a recent upgrade of the Philips Research LVCSR
system for the transcription of spontaneous speech tasks like med-
ical reporting, where filled pauses are explicitly taken into account
at all modeling levels [11]. The baseline main components are as
follows:

e The signal front-end relies on MFCC vectors augmented
with voicing features and subjected to LDA [12].

e Continuous mixtures of Laplacian densities are estimated
gender dependently with ML Viterbi training.

e Multiple pronunciations representing one fifth of all lexical
entries are weighted by their unigram priors.

e Filler specific phones are introduced together with longer
than average minimum filler phone durations.

e Decoding proceeds from left to right using a prefix-tree lex-
icon and contributions of simultaneously active pronuncia-
tions of the same word are summed up [11].

All results reported here are produced with a single decoding pass
and have been carried out using an inhouse data collection of real-
life recordings of medical reports. The acoustic training corpus
consists of about 160h of data (375 speakers, 1.4M words), where
filled pauses and non-speech events are annotated. The develop-
ment corpus (DEV set) consists of 11 speakers, 38k spoken words
and the evaluation corpus (EVAL set) of 11 speakers, 27k words.

I-351

4.2. Validation for Supervised Adaptation

The Eigen-MLLR method described in the previous sections has
been first applied to supervised speaker adaptation and compared
with standard MLLR estimations for validating the new algorithm
and gaining more insight into its behavior. A subset of “difficult”
speakers has been considered for which about 5 minutes of tran-
scribed data are available in addition to another 15 minutes for
testing. A first point concerns the “optimal” number of Eigen-
MLLR modes leading to the best adaptation improvements. A sec-
ond point concerns the use of multiple MLLRs which are based on
a tree organization of regression classes [5, 9]. The tree leaves are
phone subsets defined on broad phonetic articulatory features with
a maximum of 25 regression classes. For standard MLLR estima-
tion, the number of “active” regression classes is controlled by a
threshold of minimum observations and in the present setup 12 dis-
tinct MLLR classes are typically estimated. Concerning the Eigen-
MLLR estimation, the PCA space is based on these 12 broad-
phonetic regression classes implying a dimension of 15120 for the
joint super-vector. When keeping the multiple Eigen-MLLRs sep-
arate, the number of eigen coefficients depends on the number of
observations assigned to each class. The table below summarizes
these supervised adaptation experiments.

CASE || ML-Score | #Params | WER% | Rel.Improv.
NO ADAPT || -163.8 0 35.3% | Baseline
STD-01 -160.0 1260 | 29.9% 15.3%
STD-12 -157.3 |=15000| 27.7% | 21.5%
EIG-01 -161.7 50 30.9% 12.5%
EIG-01 -160.3 300 |29.4% 16.7%
EIG-12 Joint|| -159.8 350 | 28.3% 19.8%
EIG-12 Sep. || -157.5 | =2500 | 27.2% 23.0%

Table 1. Supervised speaker-adaptation tests

The second column gives the scaled log-likelihood score values
achieved on the adaptation data while the third column contains the
number of adaptation parameters that are numerically estimated on
these data. As shown in the table, for a single MLLR transform
(STD-01 and EIG-01 cases), the number of eigen-coefficients has
to be rather high, i.e. close to the number of PCA dimensions
unless the results are sub-optimal'. When 300 eigen-modes are
taken (or more) both methods achieve similar results, the Eigen-
MLLR reaching a slightly lower error rate which indicates that the
priors are well exploited. For the multiple MLLR case, however,
the joint eigen estimation (case EIG-12 Joint) is unable to get the
improvements obtained by a standard ML estimation of 12 affine
transformations. This is, to a large extent, due to the small num-
ber of free parameters of the joint Eigen-MLLRs, which is not
rewarding when dealing with several minutes of enrollment data.
When estimating the Eigen-MLLR coefficients separately for each
class (case EIG-12 Sep.), the standard multi-MLLR case is out-
performed with about one sixth of the parameter number. This
is yet another illustration of the tradeoff between trainability and
specificity of statistical models: by joining multiple MLLRs in one
super-vector, piecewise linear transformations of means can be es-
timated robustly from very little data while improved adaptation is

1Using only a few tens of eigen-modes as seen in some publications
might occasionally be too small for optimal results as pointed out in [13].



achieved when more parameters can be estimated from more data.

4.3. Unsupervised Speaker Enrollment

For speaker enrollment, a critical parameter concerns the amount
of adaptation data. Four durations have been considered, namely 8,
15, 30 and 60 seconds taken from the first test utterance(s). How-
ever, due to pause intervals at sentence start and the delay intro-
duced by partial traceback, the true amount of speech samples is
about half of the signal duration. Thus the effective enrollment
times averaged over the test speakers are around 4.0, 7.5, 18 and
38 seconds of spoken words. When less than 5 seconds of speech
are available, the Figen-MLLR algorithm falls back to a single
transformation while with more data, multiple MLLRs are esti-
mated jointly with an increasing number of eigen-modes between
150 and 250. No further adaptation technique is applied whatso-
ever after the single enrollment step has been completed, to focus
on the impact of the current technique. The table below summa-
rizes the enrollment results in terms of word error-rate (%) for the
DEYV and EVAL sets, each one involving 11 males speakers.

SET ||Enroll Time:|0.0 Sec| 4 Sec |7.5 Sec| 18 Sec | 38 Sec
DEV || Word-Error: | 20.1% [19.55% {19.35%|18.95%| 18.8%
Rel.Improv: 26% | 3.7% | 57% | 6.5%

EVAL || Word-Error: | 26.7% | 25.7% | 25.2% |24.85% |24.65%
Rel.Improv: - 38% | 57% | 6.9% | 7.5%

Table 2. Unsupervised speaker-enrollment (R=1 or 6, no SAT)

Generally speaking, all speakers are improved, the individual rel-
ative gains ranging from 1% to 20%. The EVAL set contains a
few “outlier” speakers including one non-native which explains the
higher baseline error-rate and also the larger gains especially with
just 4 or 7.5 seconds of enrollment data. Even with about 4 sec-
onds of speech, all EVAL speakers are improved but one and the
average error reduction is of 3.8% relative. When the enrollment
time is increased beyond 20 seconds, the additional improvements
appear small which might indicate that the current control strat-
egy of the type and number of eigen-modes is not suited for these
operating conditions.

A number of contrast experiments have been run using standard
MLLR for unsupervised enrollment with a single transformation.
A special block-matrix structure is applied for improved robust-
ness. With less than 5 seconds enrollment, the latter method ap-
pears unreliable, several speakers being actually degraded. With
7.5 seconds of speech, the improvements observed on the same
data under identical conditions are of 1.5% relative only, a factor
of 3 smaller than the average Eigen-MLLR gains. When longer
enrollment times are considered, the differences between standard
and eigen-MLLRs get smaller but remain in favor of the latter. The
eigen-MLLR approach is definitely superior as far as adaptation
speed is concerned.

5. SUMMARY

In this paper, the concept of Eigen-MLLRs has been applied to
unsupervised speaker enrollment for use in large vocabulary tasks.
Two ways of dealing with multiple MLLR transforms have been
presented, their respective merits depending on the amount of adap-
tation data. This new algorithm has been validated with supervised

adaptation experiments. Concerning unsupervised speaker enroll-
ment, significant gains have been achieved with less than 10 sec-
onds of adaptation speech. Contrast runs with standard MLLR
show that the present algorithm is significantly better for fast en-
rollment. Larger gains are expected when applied to clear outliers
like non-native with strong accents, which was not the case in the
current testing conditions.

On the other hand, when more enrollment data is considered,
the benefit of the present method has not been thoroughly eval-
uated yet. Prior information is known to be most useful when
little data from the speaker at hand is available which suggests
that Eigen-MLLRs would be profitably combined with longer term
adaptation. This technique is currently being evaluated with SAT
models for which the MLLR-PCA approach appears to be a promis-
ing complement.
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Figure 1: Structure of the sparse 3x12 matrix D(u) for d=3

100 | p[1]00 | p[2100 | u[3]00
010 | 0pu[1]0 | 0u2]0 | 0puf3]0
001 [ 00p[1] | 00u[2] | 00 u[3]

I-352

I 2



