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ABSTRACT

In this paper we consider the problem of enrollment for low-resource
speech recoginition systems designed for noisy environments. Noise
robustness concerns, memory and computational constraints along
with the use of compact acoustic models for fast Gaussian compu-
tation make adaptation especially challenging. We derive a Max-
imum A Posteriori (MAP) algorithm especially designed for the
fast off-line adaptation of these compact acoustic models. It re-
quires less computation and memory than standard Feature-space
Maximum Likelihood Linear Regression (FMLLR) which is an-
other technique well suited for compact acoustic models. In our
experiments of speaker enrollment for speech recognition in the
car, we present a computationally efficient procedure to simulate
noisy conditions with the adaptation data. In these experiments,
MAP compares favorably with FMLLR in terms of recognition ac-
curacy. Besides, combining FMLLR and MAP significantly out-
performs each technique individually, thus providing an efficient
alternative for systems with larger resources.

1. INTRODUCTION

Adaptation to speaker and/or environment is a powerful way to
improve speech recognition accuracy in real-world applications.
In this paper, we consider off-line supervised adaptation assum-
ing that enrollment data for a specific speaker or environment is
available. We address issues that are inherent to the adaptation of
noise-robust speech recognition systems with low resources such
as the ones used in embedded devices. These issues mainly in-
clude maintaining low memory and computational cost at enroll-
ment time, not increasing the memory and computational cost at
decoding time, as well as ensuring the same level of noise robust-
ness after adaptation. An additional and important issue arises in
the context of systems using compact acoustic models specifically
designed to speed up the Gaussian computation while maintain-
ing low computational and memory requirements [4]. One com-
monly used approach which reduces the computational cost and
results in a compact model consists in tying the Gaussian Mixture
(GM) distributions across all the states in the acoustic models [3].
In the Subspace Distribution Clustering Hidden Markov Models
(SDCHMM) [5], the acoustic space is split into low-dimensional
subspaces before tying is applied. Standard model adaptation tech-
niques [1], where the model parameters (means and possibly vari-
ances) are transformed to better match the speech feature vectors
are not well suited for tied systems of this type as they would re-
quire re-slicing and re-clustering the distributions of the adapted
model. Feature space adaptation techniques, such as Feature space
Maximum Likelihood Linear Regression (FMLLR) [2], that trans-
form the input speech features to better match the acoustic models,
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avoid that problem. Transformation of the input speech features,
however, adds a computational overhead at recognition time and
the estimation of the feature transform can be too expensive, from
a computational and memory standpoint, for very low-resource de-
vices. In this paper, we propose a Maximum A Posteriori (MAP)
model adaptation technique that operates directly on the sliced and
tied distributions. It does not add any computational overhead at
decoding time, and, as will be shown, it requires less computa-
tion and memory than FMLLR while providing similar recogni-
tion gains. We also show that a combination of FMLLR and MAP
yields superior performance and can be used in situations where
resources are not at a premium.

The rest of the paper is organized as follows. In section 2, we
describe the SDCHMM scheme and we show that it can be viewed
as a particular case of a Compound Gaussian Mixture (CGM) model.
In section 3, we derive a MAP adaptation procedure for the CGM
model. In section 4, we describe the standard FMLLR technique
and in section 5 we compare its memory and computational cost
with those of our MAP algorithm. In section 6, we explain how
we conducted our experiments of speaker enrollment for speech
recognition in the car in order to maintain the noise robustness
of the system through the adaptation process. The performances
obtained with various combinations of MAP and FMLLR are pre-
sented in section 7. Conclusions are given in section 8.

2. COMPACT ACOUSTIC MODELS: SDCHMM, CGM

SDCHMM [5] takes advantage of the fact that acoustic models
usually consist of Gaussian Mixtures (GM) with diagonal covari-
ances so that the likelihood can be expressed as a product of likeli-
hoods of lower dimension Gaussians. Assuming a GM model de-
fined by the set of priors, means and diagonal covariances 64, =
{pi, pi, Ei}le the likelihood of an acoustic observation at time ¢
is computed as:

Pem (Y () = ZPiN(Y(t); pi, 3i)

where V(Y (t); ps, £i) refers to the Normal distribution of mean
pi and covariance ;. In an SDCHMM, the Gaussian compo-
nents are projected onto B orthogonal low dimensional subspaces
or streams : {i.p, Zlb}zjgj} . Assuming diagonal covariances,
the likelihood can be rewritten as:

I B

pem (Y (1)) = Z pi [ TN (Vo(8); o, Si)
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where Yj(t) is the projection of Y (¢) on the b** subspace. The
Gaussians within each stream b are tied to a small number of dis-
tributions called subspace prototypes. The subspace prototypes,
e ps fkb}'gZ{(B , can be obtained by clustering the original sub-
space distributions. The original likelihood is approximated with:

psdchmm

szHN (Yo () T (i,),00 2 F(0.0),0)
i=1 =

where the function f : (i,b) — k maps each original subspace
Gaussian (p1; 5, Xi ) to the closest' subspace prototype (7, ;, Si.,b)-
All original distributions are thus closely approximated by some
combinations of a small number of subspace prototypes, resulting
in substantial memory and computational savings. In the follow-
ing, we consider a more general model where each original sub-
band distribution is approximated with a linear combination of all
the subspace prototypes instead of being approximated with a sin-
gle subspace prototype. It results in a Compound Gaussian Mix-
ture (CGM) model [7] with a tied structure such that all compound
Gaussians share a common pool of subspace prototypes:

B k=K,

I
=> o] D meaN o) By Ses)

i=1 b=1 k=1

DPcgm (Y t

where 7; 5, 1. denotes the posterior probability of prototype k given
the subspace Gaussian (7, b). SDCHMM can thus be seen as a spe-
cial case of CGM where ; 5 1, = 1if f(i,b) = k and 0 otherwise.
In the following, we propose a MAP algorithm to adapt directly
the distributions of the subspace prototypes instead of the original
distributions.

3. MAP ADAPTATION OF CGM

The set of MAP estimates are computed as a linear combination of
an existing set of parameters and of a set of Maximum Likelihood
(ML) estimates [6]:

{ﬁk,b) i]C,b}]\/IAP
ey

The problem of computing ML estimates of a CGM model can
be formulated as an ML estimation problem from incomplete data
and as such it can be solved with an Expectation-Maximization
(EM) procedure [8]. Using the same index notation as in section
2, the missing data are the Gaussian component ¢ and the subspace
prototype k,b drawn for each stream Y (t). Following the EM
framework yields the following equations for the ML estimates at
iteration (n):
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where the posterior probability u(")( t) represents the frac-
tional allocation of frame Y (¢) to the Gaussian 1 at iteration (n):

B Kip
n (")
pi[] Do a N (V) ), Th)
) = = )

S IT Y b N atersml, S0

And where the posterior probability w(") « (t) represents the frac-

tional allocation of frame Y (¢) to the Gaussian i and to the sub-
space prototype (k,b) at iteration (n):

W (#) = ud ()2 (1) (6)
with
n (n)
A0 = — T NV (05, D)
z b,k
—(n (n)
Zﬂ'zbk’ ) Néf)bazk’ )
k=1

In the particular case of SDCHMM, the EM equations simplify
with w}, (t) = w{™ (t) if f(i,b) = k and 0 otherwise. EM
iterations are performed until the likelihood of the adaptation data
stops significantly increasing.

The interpolation weight r 5 in equation 1 is computed so as to
reflect the confidence put in each ML estimate. The reliability
of the estimates (ﬁk,b,fk,b) can be quantified by its occupancy
probability over the adaptation data at the last ML iteration:

_ Zt 121 L Wi bk (1)

Whk — M (7)
Therefore, we propose to compute 7, 5 as:
Yk e—
o =4 GooTr ot 1@k S ®)
1 otherwise

where the threshold M is selected empirically.

4. FEATURE SPACE MLLR

In SDCHMM, standard model adaptation techniques where the
model parameters (means and possibly variances) are transformed
to better match the speech feature vectors are not well suited as
they would require re-slicing and re-clustering the distributions of
the adapted model. Feature space adaptation techniques, such as
Feature space Maximum Likelihood Linear Regression (FMLLR)
[2], that transform the input speech features to better match the
acoustic models, avoid that problem. In FMLLR, adaptation is
implemented through a feature space transform of the form

Y =AY +b

where Y are the speech frames, A is the transformation and b,
the bias. The transform and bias are computed iteratively such that
the likelihood of the transformed adaptation data is maximized.
With ugn) (t) denoting (as in section 3) the fractional allocation of
frame Y (¢) to the Gaussian component ¢ in the alignment of the
adaptation data at iteration (n), the standard implementation first
outlined in [2] requires two steps
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1. Computation of the sufficient statistics” at iteration (), the
matrix G((in) and the vector k((in):

n 1 n
G = }:E___§:¢>@nmwvuf
T XGb).d T
n ﬁ i,b), n
k(Y = 2_27“ LN uM )V (1) )
i f(ib),d ¢

where the index d = 1...D (with D the dimension of
the feature vector) refers to a particular dimension within
the sub-band b and where, using the same convention as in
section 2, f(i,b) refers to the subspace prototype mapped
to the original distribution 4 in sub-band b, and where V (t)
is the extended feature vector

Vi) =1 Va(t) =Ya1(t) d=2...D+1

2. estimation of A and b(™ using a row-by-row iterative
update scheme derived from the EM framework:

(n)
n a n ")
w((i ) = (—c(") —+—k((i >) (}((i -t (10)
d

where w((im is the dth row of W™ = [b(™) A(™)] where

¢\ is the extended cofactor row vector [0 cgfl) . cg,%

with ct(i"].) the cofactor of the matrix element A‘(i"j) and where

a™ is a scalar solution to a quadratic equation. Details of
this scheme are given in [2].

5. COMPUTATIONAL/MEMORY REQUIREMENTS OF
MAP AND FMLLR

For both MAP and MLLR the computations can be broken down
into four different categories:

o Alignment computation: For both MAP and FMLLR the
step of computing an alignment is common. The domi-
nant cost of an alignment computation is Gaussian com-
putation. If ns is the average number of HMM states active
at any given time in the Viterbi-search and n is the average
number of Gaussians modeling an HMM state, the compu-
tational cost during the alignment phase is approximately
equal to ns X ng x 2D per frame of speech. In a typical
low-resource system, such as the one we considered in our
experiments, s and ny are small and hence the alignment
cost is approximately O(D).

o Statistics computation: In the standard implementation of
FMLLR, the computation of the D statistics matrices G4
in Step 2 requires O(D?) operations per frame of speech
and each matrix requires storage for D? values. In compar-
ison, the MAP procedure requires only O(D) operations
per frame to compute the sufficient statistics.

o Transform computation: The estimation of the transform
and bias vector in FMLLR involves solving linear systems
of equations at each iteration which requires O(D*) oper-
ations per iteration. In comparison, the MAP procedure re-
quires only O(D) operations to update the means and vari-
ances.

2covariance matrix is assumed to be diagonal. All the equations can

however be extended to handle the full covariance case.

e Runtime computations: no additional cost is incurred for
the MAP procedure at run-time, whereas FMLLR requires
a matrix-vector multiplication at each frame.

The MAP adaptation of the subspace prototypes is thus com-
putationally and memory-wise less demanding than the FMLLR
algorithm. It is thus well-suited for the very low-resource systems
under consideration. On the other hand, if resources are not very
critical, a combination of FMLLR and MAP can be effectively em-
ployed.

6. SPEAKER ADAPTATION AND NOISE ROBUSTNESS

We compare the performances of the MAP algorithm and of the
standard FMLLR technique for speaker adaptation in a recognition
system designed for car environments, i.e. noisy environments.
For safety reasons, the adaptation data have to be collected in a
car standing still, i.e. in a quiet environment, however using ex-
clusively non-noisy adaptation data may degrade the performance
of the system in the presence of noise. Therefore noisy conditions
are simulated by artificially adding noise to the clean adaptation
data. The segments of added noise are randomly selected from
noise files that are pre-recorded in a car at 30mph and at 60mph.
The noise feature vectors are pre-computed and combined with the
speech feature vectors of the clean enrollment data when these be-
come available. Adding the noise directly to the speech features
rather than to the speech waveforms allows us to save memory
since the noise features occupy less storage space than the digitized
noise waveforms. It also allows us to save computational resources
at adaptation time since feature vectors do not need to be extracted
from the waveform of the adaptation data with added noise. A pos-
sible alternative to this scheme, that would allow further memory
savings, would be to build, off-line, models on the noise data col-
lected in the car. At enrollment time, these models would be used
to generate the sequences of noise feature vectors to be combined
with the enrollment data. In our system, the feature vectors are
13-dimensional mel-frequency cepstral (MFCC) vectors Y com-
puted from the Mel-filtered spectrum Y/ as Y (t) = C'log Y/ (¢)
where C refers to the Discrete Cosine Transform. The MFCC fea-
ture vectors X of the data with added noise are thus computed as
X(t) = Y(t) + Clog(1l + exp(C™H(N(t) — Y'(t)))) where Y
and NV refer respectively to the cepstral vectors of the clean adap-
tation data and noise data, and where C'~? refers to the inverse of
the Discrete Cosine Transform®.

7. SPEAKER ADAPTATION EXPERIMENTS

7.1. Experimental protocol

The test data on which the WER is measured consists for each
speaker of: 75 sentences uttered in a quiet environment, 100 sen-
tences uttered at 30mph and 100 sentences at 60mph. Each speaker
is enrolled in a supervised mode with a total of 75 sentences: 25
sentences collected in a quiet environment and two noisy versions
of these sentences with 30mph and 60mph car noise added. The
sentences used for adaptation and for test are different but they all
relate to a composite set of tasks: addresses, digit strings, dialing

3Since we use 13 dimensional MFCC vectors and 24 Mel filters, trun-
cated Discrete Cosine Transforms are used with, based on our experiments,
no loss in performance.
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commands, control commands, navigation commands, point of in-
terests, Vindigo style commands*. We conducted 3 experiments
using different scenarios to design each speaker’s adaptation set:
(i) an intra-task scenario where both the adaptation and test sen-
tences relate to a common single task, (ii) a mixed-task scenario
where both the adaptation and test sentences relate to a common
mix of up to 4 different tasks, (iii) an inter-task scenario where
the adaptation sentences relate to tasks that are not present in test.
The evaluation for the intra-task experiment was carried out on a
test set comprising 193 distinct speakers. The evaluation for both
the inter and mixed-task experiments were carried out on a com-
mon test set comprising 28 speakers. The front end of the speech
recognition system used in our experiments computes standard 39-
dimensional mel-frequency cepstral coefficients (including deltas
and deltas-deltas) from 16-bit PCM sampled at 11.025 KHz. The
acoustic models comprises 680 allophones covering all English
sounds and modeled with just over 10,000 Gaussians. The 39 di-
mensional Gaussians are sliced into 19 streams of dimension 2 and
one stream of dimension 1. Each of these 20 subspaces is quan-
tized into 64 subspace prototypes.

7.2. Results

Speech recognition Word Error Rates (WER) averaged over all
speakers are shown in Table 1 for the intra-task, mixed-task and
inter-task experiments (as explained in section 7.1). The baseline
WER is obtained without enrolling the speakers. We compare the
baseline WER with the WER obtained after adapting the system
with either FMLLR, MAP adaptation of the means, MAP adap-
tation of both the means and variances, and FMLLR followed by
either MAP adaptation of the means or MAP adaptation of both the
means and variances. For the MAP algorithm the count-threshold
in (7) was chosen to be 100 for all experiments. FMLLR reduces
the baseline WER by 20% relative in the intra and mixed-task ex-
periments and by 10% relative in the inter-task experiment. The
MAP adaptation of the means does not perform as well as FM-
LLR with relative WER reductions of respectively 16%, 13% for
the intra and mixed-task cases, and no significant improvement
for inter. The MAP adaptation of both means and covariances on
the other hand compares favorably with FMLLR in the intra-task
and mixed-task experiments with respectively 24% and 20% rela-
tive reductions of the baseline WER. In the inter-task experiment,
its performance is slightly inferior than FMLLR with a 7% rela-
tive WER reduction. In both the FMLLR and MAP schemes, the
performance of the adaptation degrades as the tasks represented
in the adaptation set differ more and more from the tasks present
in test. In our experiments FMLLR is less task-sensitive however
than MAP adaptation. While not being exactly additive, the gains
provided by FMLLR and MAP sum up to a certain extent when
combining the two techniques: for example FMLLR followed by
MAP adaptation of the means reduces the baseline WER by 30%,
27% and 12% in each adaptation scenario. FMLLR followed by
MAP adaptation of both means and variances does not give better
results than FMLLR followed by MAP adaptation of the means
only.

4e. up to 3-word sentences like “Greenwich Village”, “Restaurant”,

“Show walking directions”, “Italian”...etc

intra | mixed | inter
no adaptation 2.82 3.54
FMLLR 2.27 2.83 | 3.19
MAP mean 2.35 3.07 | 3.52
MAP mean+cov 2.15 2.84 | 3.28
FMLLR+MAP mean 1.97 2.61 | 3.12
FMLLR+MAP mean+cov | 1.99 2.60 | 3.22

Table 1. Average WER over all speakers on the intra, mixed and
inter-tasks adaptation scenarios

8. CONCLUSION

Low-resource speech recognition systems rely on compact acous-
tic models to reduce memory and computational costs, hence the
need for specific and low-cost model adaptation schemes. We have
presented a MAP adaptation algorithm that is well suited in this
particular context. MAP is shown to be computationally more
attractive than the alternative solution, FMLLR. We reported on
speaker adaptation experiments for speech recognition in the car,
following a protocol aimed at preserving noise robustness of the
adapted system with limited computational/memory costs. In our
experiments, MAP and FMLLR yielded similar improvements in
terms of recognition accuracy. Furthermore, a combination of FM-
LLR and MAP yielded a significant improvement over each tech-
nique individually.
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