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ABSTRACT 

In this paper, an improved method of model complexity 
selection for nonnative speech recognition is proposed by using 
maximum a posteriori estimation of bias distributions. An 
algorithm is described for estimating the hyper-parameters of the 
prior distributions, and an automatic accent detection algorithm 
is also proposed for integration with dynamic model selection 
and adaptation.  Experiments were performed on the WSJ1 task 
with American English speech, British accent speech, and 
mandarin Chinese accent speech. Results show that the use of 
prior knowledge of accents enabled reliable estimation of bias 
distributions in the case of very small amount of adaptation 
speech, or without adaptation speech. Recognition results show 
that the new approach is superior to the previous MEL method, 
especially when the adaptation data are extremely limited.  

1. INTRODUCTION 

English speech recognition systems are commonly trained from 
speech data of native English speakers. For certain tasks, these 
systems may work very well for native talkers, but the 
performance in general degrades drastically on speech with 
heavy foreign accents. It is difficult to train acoustic models for 
each foreign accent since the required vast amount of training 
data that covers different types and degrees of foreign accents do 
not yet exist.  

Currently, improving recognition performance of nonnative 
speech is an active area of research [1] - [4]. One straightforward 
approach is to use speaker adaptation techniques such as 
Maximum Likelihood Linear Regression (MLLR) [5] or 
Maximum a posteriori (MAP) estimation [6] to adapt speaker-
independent models to the foreign-accent of a new speaker. It is 
well known that a much larger amount of adaptation speech data 
is needed from a foreign-accent speaker than a native speaker to 
achieve a comparable level of recognition accuracy [1]. Another 
approach is based on multilingual acoustic modeling, where the 
phone sets of several languages are mapped to a universal phone 
set and multilingual speech data are pooled to train the acoustic 
model [2]. So far, the multilingual approach has been limited to 
small tasks, and it was reported in [2] that compared with using 
acoustic model trained from native speech alone, multilingual 
acoustic model  improved  nonnative  speech  recognition  but  it 
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degraded native speech recognition. Other techniques for 
nonnative speech recognition include nonnative speech based 
lexicon modeling, acoustic modeling, and decoding techniques 
[3] [4]. Such techniques required that the target foreign accent is 
known and substantial knowledge of foreign languages is built 
into ASR systems.  

A model selection based speaker adaptation strategy for 
nonnative speakers has been proposed recently by the authors of 
the current paper [7] [8]. The method combines dynamic 
selection of model complexity with MLLR based model 
adaptation. Experimental results of [7] showed that between 
native speakers and nonnative speakers, the curves of model 
complexity vs. recognition performance were significantly 
different. Highly detailed acoustic models that produced the best 
recognition result for native speakers were worst for nonnative 
speakers, while intermediate levels of model complexity as 
determined from adaptation speech worked best for foreign 
accent talkers. In [8], model selection from using a small amount 
of adaptation speech was accomplished by a maximum expected 
likelihood (MEL) algorithm. 

The MEL method consists of three steps. In the first step, 
an acoustic model based on phonetic decision trees (PDT) for 
triphone HMMs is trained from native English speech, where a 
Gaussian mixture density (GMD) is estimated for each node of a 
PDT, including tree internal nodes.  In the second step, Viterbi 
alignment is performed on adaptation data and each feature 
vector is assigned to a dominant Gaussian component density  
(GC) of a terminal tree node, and for each GC of a terminal tree 
node that has adaptation data a bias is calculated between the 
data sample mean and the model mean. Within each tree node, 
the distribution parameters of the biases are estimated based on 
the assumption that the biases are Gaussian random variables, 
and the expected log-likelihood is then computed for the 
adaptation data. In the third step, the optimal tree cut, or model 
complexity, is determined to maximize the expected log-
likelihood (EL) over tree cuts by using a bottom-up pruning 
method. 

In the MEL method, the performance of model selection 
depends on the quality of the estimated bias distributions, and 
model selection could be unreliable when data are limited. As 
described in [8], a dynamic clustering scheme is deployed to 
group similar Gaussian components into an allophone cluster 
that corresponds to a tree node. In order to reliably estimation a 
bias distribution, a cluster is generated only when there are 
sufficient samples of bias accumulated in it. As the result, certain 
tree nodes would have bias distributions while others not, and a 
tree node without a bias distribution will then use the one from 
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its closest parent node. It is clear that when data is very sparse, 
only a few clusters might be generated, and each cluster may 
include GCs with very different properties. In the extreme case, 
all GCs could be grouped into a single cluster and share only one 
global bias distribution. This situation is undesirable since for 
each foreign accent, the data-model mismatch is highly 
dependent on phones or phone-classes, and sharing only a few, 
or a global, bias distributions over all phones would be to coarse 
to characterize a foreign accent.  

If certain a priori knowledge of foreign accents could be 
utilized in estimating bias distributions, more reliable and 
detailed bias distributions could be obtained even when data is 
very limited. With prior knowledge, when the amount of data is 
small, parameter estimation is base more on prior knowledge 
than data to obtain better results. Moreover, given the prior 
knowledge of the mismatch condition at the level of phones, a 
bias distribution can be estimated for a phone unit that may not 
even have any data. In this way, bias distribution sharing can be 
made at a much finer level, and better performance of model 
selection is expected. 

In this paper, a prior knowledge guided MEL approach, 
referred to as P-MEL, is proposed based on maximum a
posteriori (MAP) estimation [9] of the bias distribution 
parameters. To facilitate choosing accent-specific knowledge for 
each speaker, an automatic accent detection algorithm is also 
developed. This new approach is evaluated on the WSJ task with 
speech data of American English speakers, British English 
speakers and mandarin Chinese accent English speakers. For 
each foreign accent, a small set of speech data was used to 
estimate the priors of the bias distributions. Recognition 
evaluation test was the 5000 words WSJ task. Experimental 
results verified that the P-MEL approach is superior to the MEL 
approach when the amount of adaptation data is very limited. 

2. MAP ESTIMATION OF BIAS DISTRIBUTIONS 

2.1. MAP based parameter estimation 

Given a data set X, MAP estimation gives the optimal model by 

arg max ( | ) ( )MAP f X g , (1) 

where the prior distribution g( ) characterizes the knowledge 
about the model parameter set . In general, when the size of X
is small, g( ) dominates (1) and the optimal  is based more on 
the prior knowledge; when the size of X is large, f ( X |  ) 
dominates (1) and the optimal  is based more on the observed 
data.  For each foreign accent, a set of prior distributions can be 
defined, with one distribution for one phone unit. The MAP 
estimate of  depends on assumption of g( ) which is often 
taken as a conjugate prior  distribution [9]. 
 Assume for a Gaussian pdf  f(b| )  with  = { , },  where 

 = 1/ 2 is the precision parameter. The joint conjugate prior 
g( , ) is a normal-gamma distribution, where the conditional 
distribution of  given  is a normal distribution with mean 
and variance 1/ , and the marginal distribution of  is a gamma  
distribution  with  parameters   > 0  and   > 0, i.e., 
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where n is the total number of samples in the set {bi}, b and S2

are the sample mean and sample variance of that set, and  , 
and s2 are the hyper-parameters of g( , ).

2.2. Prior distribution estimation 

Modeling the prior distributions at the level of phone units 
appears to be a good choice since phoneme is the basic unit of 
pronunciation. Although clustering allophones at the sub-phone 
level may characterize more details of accents, to reliably 
estimate the priors at such a level would require a significant 
amount of accent-specific training data.  Assume that speech 
data of K speakers with accent   are given for estimating the 
priors. For each speaker k, the sample mean ,q ke and variance 

2
,q kS  of the data-model mismatch biases are first computed for 

each phone q. The hyper-parameters of the prior distribution for 
the phone q are then estimated as  
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The hyper-parameters qv  and sq
2 serve as the prior knowledge of 

data-model mismatch in phone unit q for the given accent. 

2.3. Automatic accent detection and prior selection 

The priors of bias distribution parameters are likely quite 
different for different foreign accents. This requires knowing the 
accent of each talker in order to apply proper priors in estimating 
the posterior bias distributions. On the other hand, due to mother 
tongue influence, speakers with the same foreign accent may 
consistently pronounce certain phonemes well and certain other 
phonemes poorly. This accent-specific pronunciation pattern of 
phonemes is reflected in the data-model mismatch over the 
defined phoneme set and can be utilized for automatic accent 
detection.  
 The accent models were trained in a similar way as the 
priors of bias distributions. For each accent  and each phone q,
a Gaussian distribution 2

, ,( , )q qN e S  is estimated from the bias 

samples in the training data, and the set of Gaussian distributions 
over the phone set becomes the accent model.   
 In testing, a set of biases B = {bi} are first calculated from 
the online test speech data. The average log-likelihood of B
given  is then computed as: 

2
, , ,

1 1

1
( | ) log ( | , )

qNQ

q j q q
q j

L B N b e S
N

 (5) 

where Q is the number of phones, N is the total number of bias 
samples, Nq is the number of bias samples in phone q, bq,j is the 
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j-th bias sample in the phone q. The decision rule is  

* arg max ( | ) ( )L B R  (6) 

where ( )  if  =  nat natR C , and ( ) 0 if    natR ,

with nat denoting the native English speakers and natC > 0. The 

use of R( )  in (6) is to reduce the risk of classifying a native 
English speaker to a foreign accent speaker (see section 3.2) . 

The procedure of P-MEL based dynamic model selection 
and adaptation is similar to that of the MEL approach in [8], 
except that the bias distribution estimation is done under the 
MAP criterion, and accent-specific priors are determined by an 
accent detection algorithm described above. 

3. EXPERIMENTAL RESULTS 

3.1. Experimental condition 

The baseline acoustic model was the same as used in [8] and was 
trained from the speaker-independent short-term training data 
(SI_TR_S, 200 speakers) of WSJ1. Within-word triphone HMM 
model each had three emitting states (“short-pause” model had a 
single state), and each state had a mixture of 16 Gaussian 
densities. Speech features consisted of 39 components of 12 
MFCCs, energy, and their 1st and 2nd order derivatives. Cepstral 
Mean Normalization (CMN) as implemented in HTK was used. 
In testing, the 5K-vocabulary bigram language model of WSJ1 
was used, and the decoder was provided by HTK v2.2 [10]. The 
acoustic model complexity and the decoding parameters of 
language model scale and word penalty were optimized for 
recognition of native speech [8].  
        In estimating the priors of bias distributions and performing 
recognition tests, data sets of native English speech, British 
accent speech and Chinese accent speech were used. Native 
English speech data consisted of WSJ1 set SI_DT_05 (NT1), 
and WSJ1 set SI_ET_H2 (NT2). NT1 and NT2 each had 10 
speakers, with about 90 utterances per speaker in NT1 and 60 
utterances per speaker in NT2.  The British accent speech data 
came from LDC-WSJCAM0. Two groups were defined as BR1 
and BR2, with each group having 10 speakers and about 85 
utterances per speaker. The Chinese accent data set CH1 
included three males and three females, where data collection 
were made under a similar acoustic condition and using the 
WSJ1 prompting texts. Each talker provided about 120 
utterances. The baseline recognition performance on the five 
speaker groups is shown in Table 1. CH1 was the most difficult, 
with word error rate of 64.55%. British speaker groups also 
showed significant difficulties, with over 20% word error rate 
(absolute) than the native English speaker groups.  

Table 1. Baseline recognition word error rates on the five data 
sets: NT1, NT2, BR1, BR2, CH1. 

Group ID NT1 NT2 BR1 BR2 CH1 
Baseline WER % 10.86 9.67 31.41 35.62 64.55 

In subsequent experiments, NT1 and BR1 were used to 
estimate the priors of the native speakers and British accent 
speakers, and NT2 and BR2 were used as the testing sets; the 
leave-one-out scheme was used for CH1, with the six speakers 
each used as the held-out test speaker once, and average word 

error was computed. In estimation of the hyper-parameters, the 
lower bound of the number of feature frames for estimating a 
bias sample was set to 35, and at least 30 samples of bias were 
used to estimate a prior distribution. 

3.2. Analysis of prior distributions 

Evaluations were made on model selection by using the 
estimated priors (without adaptation data) and its effect on 
recognition accuracy. Recognition results are summarized in 
Table 2 for the nine combinations of three test speaker groups 
and the three sets of priors. Compared with Table 1, Table 2 
shows large performance improvements in BR2 and CH1, and 
only slight degradation in NT2. It can be observed from Table 2 
that applying accent-mismatched priors to native English 
speakers caused significant performance degradation, whereas 
improvements were achieved for nonnative speakers even with 
mismatched priors. This result motivated the use of R( ) in 
Eq.(6) to bias  the detection output towards native speaker.  

Table 2. Recognition word error rates after model selection by  
using the prior distributions only. 

           prior  
test set 

CH1 BR1 NT1 

CH1 54.05 54.19 57.75 
BR2 32.34 32.07 32.66 
NT2 11.15 11.51 10.40 

3.2. Accent detection 

Based on the priors of phones and phonetic classes, the accent 
detection method was evaluated on NT2, BR2, and CH1. Each 
speaker provided 40 adaptation utterances. For each test speaker, 
the first N adaptation utterances were used in accent detection, 
where N  was set as  1, 3, 5, 10, 20, 40. When N > 1, the lower 
bound on the number of feature frames was set to be 35 for each 
bias sample, and when N =1 the bound was set to 25. The 
constant Cnat was empirically set to be 2.5. Accent detection was 
performed according to (5) and (6).The detection error counts 
versus used utterances is shown in Table 3.  

Table 3. Error count in accent detection 
# utterances  1 3 5 10 20 40 

CH1 1 1 0 0 0 0 
BR2 0 0 0 0 0 0 
NT2 1 0 0 0 0 0 

3.3. P-MEL based dynamic model selection and adaptation 

In implementing the P-MEL method, to avoid unreliable 
estimate of S2 in (4), it was required that at least five samples of 
biases be accumulated in each phone or phonetic class, or else 
the bias distribution be estimated directly from the prior 
knowledge. For comparison, the MEL method as proposed in [8] 
was implemented under the similar condition, with the threshold 
on the number of biases for a full node set to be 25, and the 
threshold on the number of data frames for a full terminal GC set 
to be 30. Phonetic decision trees similar to those in [8] were 
used and the bias distributions were tied for prior sharing to have 
42 clusters that corresponded to 42 phone units. In MAP bias 
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distribution estimation,  was set to 15. 
For each test speaker, the first N adaptation utterances, N = 

1, 3, 5, 10, 20, 40, were used for model adaptation and selection, 
where the data partition for model selection and for model 
adaptation depended on N. When N < 20, all utterances were 
used in model selection, and a subset was used in initial model 
adaptation. Specifically, when N = 1, initial adaptation was not 
performed; when N = 3, the first utterance was used for initial 
adaptation to estimate a global bias-only transformation; when N
= 5, the first two utterances were used for initial adaptation to 
estimate a global diagonal MLLR transformation; when N = 10, 
the first five utterances were used to estimate a global full 
MLLR transformation. For N = 20 or 40, half amount of 
adaptation utterances were used to estimate full MLLR 
transformations, where the sample size threshold for estimating 
a MLLR transformation was set to 500.       

Recognition results on CH1, BR2, and NT2 are shown in 
Fig. 1. It is observed that, for native speech, there is no 
significant performance difference among the three approaches, 
but for nonnative speech, in every size of adaptation data, both 
MEL and P-MEL methods outperformed conventional MLLR 
method, and P-MEL performed better than MEL. The difference 
in error rates between MEL and P-MEL decreased with the 
number of adaptation sentences increased from 10 to 40. But the 
difference between the two methods was somewhat irregular
with 1 to 5 adaptation sentences, possibly due to current choice 
of hyper-parameter  and outliers in MEL that were associated 
with extremely limited data. It is worth noting that if the accent 
types of the foreign accent speakers were known, then the word 
error rate of the P-MEL method would be significantly reduced 
at N = 0, as given in Table 2 for the matched prior cases. 

4. CONCLUSION 

In this paper, a more reliable method for selecting model 
complexity in the case of sparse data is proposed by using 
maximum a posteriori estimation of bias distributions. 
Experiments were performed on American English speech, 
British accent speech, and mandarin Chinese accent speech. The 
results showed that the MAP approach enabled more reliable 
estimation of bias distributions with very small amounts of 
adaptation speech, or no adaptation speech. An automatic accent 
detection algorithm is also proposed for integration with 
dynamic model selection and adaptation.  Recognition results 
show that accent detection combined with  P-MEL is superior to 
the previous MEL method. 
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Fig. 1. Recognition WER vs. amount of adaptation data for 
Chinese, British, and native accent speaker sets CH1,BR2, NT2. 
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