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ABSTRACT

In this paper, we present a discriminative method for speaker adap-
tation, where the minimum phone error (MPE) criterion is used
to estimate the discriminative linear transforms (DLTs), includ-
ing both mean and diagonal variance transforms. The I-smoothing
technique is essential to improve the generalization of DLTs. Ex-
periments on supervised adaptation for non-native speakers on the
North American Business (NAB) Spoke 3 task show that MPE-
based DLT outperforms both MLLR and a previously proposed
discriminative method for transform estimation. Preliminary ex-
periments on unsupervised DLT estimation are also reported for
conversational telephone speech transcription.

1. INTRODUCTION

Speaker adaptation is crucial to producing a speaker-specific sys-
tem from a speaker-independent HMM set, given only a small
amount of adaptation data. For a variety of adaptation tasks, max-
imum likelihood linear regression (MLLR) [4] for model-space
transformation is an effective and efficient approach. MLLR can
use a so-called regression-class tree to adjust the number of gener-
ated transforms, according to the amount of adaptation data avail-
able. Using the maximum likelihood (ML) criterion to estimate the
transform parameters, MLLR can be used to estimate mean trans-
forms, diagonal variance transforms, or full variance transforms
for the HMM parameters. MLLR can operate in either supervised
or unsupervised mode.

Since discriminative training criteria [11], such as maximum
mutual information (MMI) and minimum phone error (MPE) [6, 8]
have been successfully used to train HMM-based acoustic mod-
els, it is then expected that the same discriminative criteria can
benefit the estimation of the linear transforms for both adaptive
training [10] and adaptation. In related work [9], the H-criterion
was used to estimate discriminative linear transform (DLT), where
the H-criterion is an interpolation the of ML and MMI training
crteria. The conditional maximum likelihood linear regression
[2], which is equivalent to the MMI criterion, has been used for
transform generation. Furthermore, the use of minimum classi-
fication error (MCE) to estimate the diagonal variance transform
has been explored [3]. Apart from the use of unconstrained trans-
forms (different transforms for the means and variances), we have
previously also investigated the use of the MPE criterion for con-
strained (same transform for means and variances) DLT estima-
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tion, which can be applied in the feature-specae for discriminative
speaker adaptive training [10].

Experiments on conversational telephone speech (CTS) tran-
scription for the direct estimation of HMM parameters [11, 6, 8]
have demonstrated that MPE training reliably outperforms MMI
training on test data, since error driven criteria such as MPE, focus
on correctable errors in the training data rather than outliers which
may reduce the effectiveness of MMI training. Therefore, in this
paper, we concentrate on using the MPE criterion for linear trans-
form estimation, and investigate the use of MPE-based DLT for
both supervised and unsupervised speaker adaptation. The deriva-
tion for MPE DLT estimation relies on the use of weak-sense aux-
iliary functions [8]. Furthermore it is necessary to smooth the dis-
criminative statistics with those used for ML estimation. This I-
smoothing [6] can also be used to improve the generalization of
MPE-based DLT.

The effectiveness of MPE-based DLT estimation is first evalu-
ated in the context of supervised adaptation to non-native speakers
from a HMM set trained on native speakers and uses the North
American Business News Spoke 3 task. We have then investigated
the use of discriminative estimation for unsupervised adaptation,
which by the nature of discriminative training techniques is a diff-
cicult problem.

The rest of this paper is organized as below. In Section 2, we
describe the MPE criterion for DLT estimation, including the use
of a weak-sense auxiliary function and statistics smoothing tech-
nique. The supervised adaptation results on the NAB Spoke 3 task
are presented in Section 3. For unsupervised mode adaptation, the
experiments are carried out on CTS transcription. Finally, some is-
sues concerning MPE-based DLT for unsupervised adaptation are
discussed in the last section.

2. THE MPE CRITERION FOR DISCRIMINATIVE
LINEAR TRANSFORM

The MPE criterion was recently proposed for continuous speech
recognition training. It aims to maximise an approprixation to the
training set phone accuracy, evaluated in a word recognition con-
text. The MPE objective function is defined in [6, 8] as

FMPE(λ) =
R�

r=1

�
ŵ

Pλ(Or|Mŵ)κP (ŵ)RawAccuracy(ŵ)

�
w

Pλ(Or|Mw)κP (w)
,

(1)

where Mw is the composite model corresponding to the word se-
quence w, P (w) is the probability of the word sequence w and κ is
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the acoustic scale. The RawAccuracy(ŵ) measures the number
of phones correctly recognized in the sentence ŵ.

In the implementation of MPE training, lattices marked with
time information at HMM level are used to represent both the cor-
rect transcriptions and confusable hypotheses from recognition, as
in the case of MMI training [11]. Using lattices for discrimina-
tive training in this way can significantly reduce the computational
load for generating the statistics needed for parameter estimation.

2.1. The Optimization of Discriminative Objective Functions

For the optimization of discriminative criteria, the weak-sense aux-
iliary function was proposed [7, 8], in contrast to the use of the
standard or “strong-sense” auxiliary function used in standard ML
training. Given the objective function F(λ), the weak-sense aux-
iliary function is defined to satisfy the following condition:

∂

∂λ̂
G(λ̂, λ)

����
λ̂=λ

=
∂

∂λ̂
F(λ̂)

����
λ̂=λ

where λ refers to the original parameter set and λ̂ represents the
newly estimated one. This equation implies that if there is a local
maximum in the objective function, it must also be a local max-
imum of the auxiliary function. Although optimizing the weak-
sense auxiliary function doesn’t guarantee an increase in the ob-
jective function, it can still offer the minimum condition for the
optimization of F(λ). For discriminative training, the weak-sense
auxiliary function provides a feasible approach to optimize the ob-
jective functions with negative terms.

For the MPE objective function, the auxiliary function pro-
posed in [7, 8] is then based on the log likelihood of phone arc q,
log p(q):

GMPE(λ, λ̂) =
R�

r=1

Qr�
q=1

∂FMPE

∂ log p(q)

����
(λ=λ̂)

log p(q). (2)

Here each sentence r contains a set of phone arcs q = 1, ..., Qr ,
and p(q) represents the likelihood of arc q calculated from the cor-
responding starting to ending times.

Eq. (2) can be separated into two parts in terms of the positive

and negative values of ∂FMP E
∂ log p(q)

����
(λ=λ̂)

, which are analogous to the

numerator and denominator terms in the MMI auxiliary function.
More important, it is proven that the model parameter updating
formulations have the similar forms as those used in MMI training,
provided that the numerator/denominator statistics have modified
definitions[8].

When using the MPE criterion to estimate linear transforms,
a weak-sense auxiliary function is used to derive the optimisation
procedure. As in standard MLLR [1], an MPE-based DLT is used
to transform the Gaussian means with a matrix A and a bias b,

µ̃m = Aµm + b = Wξm,

where W = [ b A], ξm = [ 1 µm
T ]T . With the quantity defined

for MPE training, γMPE
q = 1

κ
∂FMP E

∂ log p(q)
, the auxiliary function

consists of three individual parts, each of which has a Gaussian

expression,

GMP E (W, Ŵ )

=

R�
r=1

Q�
q=1

t=eq�
t=sq

γqm(t)f(γMPE
q ) logN (o(t), Ŵ ξm, Σm)

−
R�

r=1

Q�
q=1

t=eq�
t=sq

γqm(t)f(−γMPE
q ) logN (o(t), Ŵ ξm, Σm)

+Gsm(W, Ŵ ) (3)

where γqm(t) is the posterior probability over time t, at state j,
mixture component m on condition of arc q. The function f(γMP E

q )
defined as below determines that the arcs with positive γMP E

q will
be used to accumulate the numerator statistics, while those with
negative values will be used to get denominator statistics.�

f(γMP E
q ) = max(0, γMP E

q )
f(−γMP E

q ) = max(0, −γMP E
q )

The smoothing function in Eq. (3) associates with the initial adapted
model parameters to improve the stability of training,

Gsm(W, Ŵ ) =
�
m

Dm

�
−1

2

�
log |Σ̂m|

+(Wξm − Ŵ ξm)T Σ̂−1
m (Wξm − Ŵ ξm) + ΣmΣ̂−1

m

��

Obviously the differential of this smoothing function at Ŵ = W is
zero, so that adding this function ensures that the whole auxiliary
function still satisfies the condition for weak-sense definition. And
Dm is defined as the smoothing factor with a constant E,

Dm = E

Q�
q=1

t=eq�
t=sq

γqm(t)f(−γMP E
q ).

2.2. MPE-based discriminative linear transformation

Calculating the partial differential of Eq. (3) with respect to each
row of the linear transform ŵ(i) yields a close solution:

ŵ(i) =G(i)−1
k(i)

G(i) =
�
m

1

σ2
m(i)

�
(γnum

m − γden
m ) + Dm

�
ξT

mξm

k(i) =
�
m

1

σ2
m(i)

�
θnum

m (O(i)) − θden
m (O(i)) + Dmµ̃m(i)

�
ξT

m

(4)

Here, the numerator/denominator statistics to estimate MPE-based
DLT have the following forms,

γnum
m =

Q�
q=1

t=eq�
t=sq

γqm(t)f(γ
MP E

q )

θnum
m (O)=

Q�
q=1

t=eq�
t=sq

γqm(t)f(γ
MP E

q )o(t)

θnum
m (O2)=

Q�
q=1

t=eq�
t=sq

γqm(t)f(γ
MP E

q )o2(t), (5)
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γden
m =

Q�
q=1

t=eq�
t=sq

γqm(t)f(−γ
MP E

q )

θden
m (O)=

Q�
q=1

t=eq�
t=sq

γqm(t)f(−γ
MP E

q )o(t)

θden
m (O2)=

Q�
q=1

t=eq�
t=sq

γqm(t)f(−γ
MP E

q )o2(t). (6)

The smoothing factor Dm = Eγden
m is given as in [5], E is a

constant between 1 to 2 (selected by empirical results), and µ̃m is
the adapted mean vectors with the initial MLLR transform W .

Moreover, we can also derive the diagonal variance transform
Ĥ under MPE criterion after applying the newly estimated mean
transforms Ŵ . As ML-based diagonal variance transform, the
MPE-based diagonal variance transform is used to transform the
diagonal variance,

Σ̂m = HT ΣmH, Σ̂−1
m = LT

mH−1Lm

where Lm is the Choleski factor of Σ−1
m . Given that

ô(t) = o(t) − µ̂m = o(t) − Ŵ ξm

θnum
m (Ô2) =

Q�
q=1

t=eq�
t=sq

γqm(t)f(γ
MP E

q )ô2(t)

θden
m (Ô2) =

Q�
q=1

t=eq�
t=sq

γqm(t)f(−γ
MP E

q )ô2(t)

the auxiliary function in Eq. (3) could be rewritten as below:

G(H, Ĥ) =

R�
r

Q�
q=1

t=eq�
t=sq

γqm(t)f(γ
MP E

q ) logN (o(t), µ̂m, ĤT ΣmĤ)

−
R�
r

Q�
q=1

t=eq�
t=sq

γqm(t)f(−γ
MP E

q ) logN (o(t), µ̂m, ĤT ΣmĤ)

+
�
m

Dm

�
−1

2

�
log |Ĥ|2 + Σ̃mLT

mĤ−1Lm

+(µ̃m − µ̂m)T LT
mĤ−1Lm(µ̃m − µ̂m)

��
(7)

Solving the partial differential with respect to Ĥ, we can obtain the
MPE-based diagonal variance transform for each element ĥ(i):

ĥ(i) =

�
m

�
1

σ2
m(i)

�
θnum

m (Ô2
(i)) − θden

m (Ô2
(i)) + DmZm(i)

�	
�
m

γnum
m − γden

m + Dm

Zm(i) = σ̃2
m(i) + (µ̃m(i) − µ̂m(i))

2 (8)

where Dm has the same definition as used in Eq. (3), µ̃m and σ̃2
m

are transformed mean and diagonal variance by the initial MLLR.

2.3. The smoothing technique for MPE-based DLT

The I-smoothing technique was introduced [8] to prevent MPE
training from over-training and improve its generalization. The
basic idea behind I-smoothing is to incorporate the information
from ML statistics as a “prior”, so as to smooth the discriminative
statistics over each Gaussian component. In our implementation,
an extra term log P (Ŵ ) is appended to the auxiliary function in
Eq. (3), which is given by ignoring the terms independent of Ŵ :

log P (Ŵ ) =
�
m

�
−1

2

�
τ log |Σm|

+
τ

γml
m

�
t

γml
m (t)(o(t) − Ŵ ξm)T Σ−1

m (o(t) − Ŵ ξm)
��

(9)

where τ points of statistics are coming from ML training. Hence,
the numerator statistics to estimate MPE-based DLT will be mod-
ified with the occupancy count τ :

γnum
m

′
= γnum

m + τ,

θnum
m (O)

′
= θnum

m (O) +
τ

γml
m

θml
m (O),

θnum
m (O2)

′
= θnum

m (O2) +
τ

γml
m

θml
m (O2). (10)

3. EXPERIMENTS

3.1. Supervised adaptation on WSJ

In our experiments on WSJ, the acoustic models were constructed
with ML training on the SI-284 WSJ0+1 training set. The front
end used MF-PLP analysis to get the 39-dimensional features, in-
cluding static cepstra with 1st and 2nd order derivatives. Thus the
gender independent cross-word triphone HMMs consist of 6399
tied-states with 12 Gaussians per state. The testing adaptation is
performed on 1994 NAB Spoke 3 (s3-dev and s3-eval) task with
an enrollment set (40 utterances) and a testing set (about 20 utter-
ances) for each speaker.

The lattice-based framework as used in MPE training is also
employed here to estimate MPE-based DLT on the enrollment set.
Initially, word lattices are generated by fast decoding on the adapted
models (using MLLR after 3 iterations), with a 20K WSJ bigram
language model (LM). Then the denominator and numerator phone-
level lattices are created by aligning the recognized word lattices
and correct transcriptions separately with a unigram LM. The ap-
propriate statistics for MPE-based DLT are accumulated via a forward-
backward pass through the lattices marked with the phone start-
ing/ending time. Thus using the regression-class tree with 16 base-
classes for speech and 1 baseclass for silence, mean and diagonal
variance transforms are estimated under both MLLR and MPE-
based DLT schemes.

To evaluate MPE-based DLT for supervised adaptation, the
full decoding with 5K word vocabulary and a bigram LM is op-
erated and then the generated lattices are expanded with a trigram
LM for further rescoring. We list the lattice rescoring results af-
ter adaptation in Table 1, where H-cri DLT refers to the use of
H-criterion for DLT estimation [9]. And M2 means that the word
lattices for DLT estimation are re-generated by decoding on the
adapted models (using DLT after 3 iterations).

It is observed that MPE-based DLT can improve the super-
vised adaptation by reducing WER absolute 1.0%, in comparison
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Test sets iterations MLLR H-cri DLT MPE-DLT
s3-dev 1 ite 13.2 12.4 12.2
s3-eval 1 ite 11.1 10.3 10.1
s3-dev 3 ite 12.4 11.9 11.8
s3-eval 3 ite 10.4 10.6 10.1
s3-dev M2 - 11.9 11.8
s3-eval M2 - 10.1 10.0

Table 1. The WER(%) on NAB Spoke 3 after MLLR, H-criterion
DLT and MPE-based DLT adaptation.

with standard MLLR after 1 iteration. After multiple iterations,
MPE-based DLT still outperforms MLLR by decreasing WER ab-
solute 0.6% for s3-dev and 0.3% for s3-eval. It is worth noting
that the convergence can be improved when comparing MLLR and
DLT after 3 ite. vs. 1 ite.. Moreover, MPE-based DLT performs
better than H-criterion DLT, since the smoothing term in the aux-
iliary function ensures its convergence.

3.2. Unsupervised adaptation on CTS transcription

The acoustic models were built with MPE training on CTS tran-
scription (76 hours training set). Trained with a HLDA front-end,
the speaker-independent triphone HMMs contain 5920 tied-states
with 12 Gaussian components per state. For testing , half of the
official development set for the 2001 NIST evaluation dev01sub
are used with approximate 3 hours of speech. And lattice rescor-
ing rather than full decoding is operated [10] to evaluate the linear
transforms estimated under different criteria.

The 1-best Viterbi output after lattice-MLLR adaptation (5
mean transforms and global full variance transform) and confu-
sion network (CN) decoding is then as the hypothesis to generate
the reference phone marked lattices for DLT estimation. The de-
nominator word lattices are created with the bigram LM, which
are then aligned to phone level lattices. Therefore, 2 mean and
diagonal variance transforms are estimated under MLLR scheme,
MMI-based DLT (the estimation formulations are identical to that
in [2]) and MPE-based DLT scheme individually. The cheating re-
sults, where the true transcriptions are used to generate phone level
reference lattices for DLT estimation, are also summarized in the
following table.

Adaptation hypothesis true trans
+CN (27.0)

MLLR 27.7 27.0 26.1
MMI-DLT 27.5 26.8 24.8
MPE-DLT 27.3 26.9 23.2

Table 2. The WER(%) on dev01sub for MPE system, after
MLLR, MMI-based DLT and MPE-based DLT adaptation.

It can be seen that MPE-based DLT yields absolute 0.4% WER
gain over MLLR, and 0.2% gain over MMI-based DLT. After CN
decoding, MPE-based DLT gives 0.1% decrease in WER com-
pared with that of the hypothesis. Although MMI-based DLT yields
more 0.1% gain over MPE-based DLT after CN decoding, we be-
lieve that MPE-based DLT could perform better than MLLR and
MMI-based DLT which is proven from the cheating column. This

aspect implies that MPE-based DLT can be developed for unsu-
pervised adaptation with further work.

4. DISCUSSIONS AND CONCLUSIONS

This paper has investigated using the MPE criterion for DLT esti-
mation, which can be applied to both supervised and unsupervised
adaptations. With the presented weak-sense auxiliary function, the
estimation formulations for MPE-based DLT have been derived,
where I-smoothing is used to prevent over-training. The experi-
mental results on WSJ task have shown that MPE-based DLT can
considerably improve the supervised adaptation performance.

Our ongoing investigations focus on using MPE-based DLT in
the unsupervised style. To effectively use the hypothesis for MPE-
based DLT estimation, the confidence scores from CN outputs can
be used to accumulate the statistics with high confidence. Alterna-
tively, with the numerator lattices, the most likely lattices can be
weighted by posterior probabilities to estimate DLT.
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