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ABSTRACT 

This paper describes a parametric Wiener filter designed 

for noise removal with low distortion of the speech signal.   

The classic Wiener filter is augmented with a proportional 

variable for noise estimation, and a floating floor variable 

for the transfer function. These two variables are adaptive 

to the estimated noise energy in parametric relations 

determined experimentally for the corresponding noise 

estimator. The optimization of those parameters can 

enable the filter to achieve low distortion noise removal. 

Experiments using some office and home appliance noises 

have shown superior performance in comparison to the 

common Wiener filter and the spectral subtraction 

approaches. The proposed method has comparable quality 

but less computational demands than the psycho-

acoustically motivated Gustafsson filter. Because of low 

distortions, the filter may also be used in cascading with 

others to achieve better total performance. 

1. INTRODUCTION 

Many filtering algorithms for additive noise reduction 

have been developed, including spectral subtraction, 

Wiener filtering, and psycho-acoustically motivated filters 

[1, 2, 3]. Recently, nonlinear solutions have been proposed 

on discrete wavelet transform via thresholding the DWT 

coefficients [4, 5]. The latter has shown that it can be 

advantageous to cascade a perceptually adaptive wavelet-

denoising filter after a low distortion spectral subtraction 

filter. 

Cascading multiple filters would further improve 

speech quality, only if each filter could keep improving. It 

requires that each filter produces very small distortions to 

avoid them multiplying, and is workable in wide SNR 

ranges. Cascading filters based on complementing theories 

can achieve a better solution by joining strength of 

different approaches. It may also be performed in the same 

domain without the transform overhead. 

However, the most currently available filters do 

not satisfy the low distortion requirement. They remove 

noise but also produce distortions. They degrade speech 

quality outside a narrow SNR range, especially for the 

high SNR signals, because the less degradation due to 

noise interference but more due to filtering distortion. If 

they are used in cascading, severe speech degradation can 

occur. 

Towards solving this problem, we designed a 

parametric Wiener filter, which can produces much less 

distortions than the standard Wiener filter, as an 

alternative to the preprocessing method used in [5]. It 

improves speech quality in a reasonably wide SNR range. 

The basic idea is to use adaptive variables to adjust the 

behavior of the Wiener filter to balance the degradation 

due to noise interference and due to filtering distortion. 

In section 2, we formulate the noising reduction 

problem and give an alternative derivation of the classic 

Wiener filter formula. In section 3, we present the 

proposed parametric Wiener filter. Section 4 describes the 

experiments and section 5 the conclusions. 

2. THE CLASSIC WIENER FILTER 

For a section of input speech signal corrupted with 

additive noise, after pre-emphasis filtering, window 

function multiplication, and FFT, each data sample can 

still be considered as the sum of signal and noise 

components, because all those operations are linear.  
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Where F is the number of FFT coefficients. Only half of 

them are considered due to symmetry of FFT. We want to 

find a filter H, so that the estimated signal 
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will minimize the following objective function. 
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To minimize J, we partial derivative it with respect to H, 

and let it equal to zero. 
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Then, we have H to be 
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Where 0}{ =SNE  because signal and noise components 

are uncorrelated. 

3. THE PARAMETRIC WIENER FILTER 

Figure 1 shows a diagram of actual filtering operation. The 

filtering block is between the analysis and synthesis 

modules. It consists of a filter to compute the transfer 

function H(f) and multiply it with the analysis output X(f),

and a noise estimator producing the estimation of noise 

variance )( fRN

)

.

Figure 1 – The diagram of filtering operation 

Let the smoothed version of input signal and 

noise variances be: 
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The parametric Wiener filter is given as 
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where γ is the proportional variable for noise estimation, 

and h is the floating floor variable of the transfer function. 

The variants of (7) has been used before, where γ and h are 

constants [6]. However, our experiments have shown that 

for different SNR signals at different frequency bins, there 

are different optimal γ and h values. 

Therefore, our contribution is to parameterize 

these two variables as follows:  
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For a given data set and a particular noise estimator k,

),,,),(),(( min0max00min hhhckkHH pw γγ= , and those 

parameters can be optimized to achieve low distortion 

noise removal.  

Intuitively the equation (8) reflects the following 

ideas. When noise is small, the γ will decrease and h will 

increase, so as to reduce the filtering operation and the 

distortion, because this is the main cause of speech 

degradation. When noise is strong, the reverse will 

happen, so as to increase filtering operation to reduce 

more noise because that is the main cause of degradation. 

4. EXPERIMENTAL RESULTS 

4.1. Implementation and Testing Data

The analysis and synthesis modules are implemented as 

the GSM mobile phone standard. 160 samples of pre-

emphasized input data block are prefixed with last 40 

samples of previous block, and multiplied by a cosine 

windowing function and padded 56 zeros at end for 256 

sample FFT. After spectral filtering, IFFT is performed 

and outputs are de-emphasized. Then overlap-add is used 

to produce 160 samples of output data block.

Raw data were recorded in an ordinary office 

room with an air-conditioning fan off.  4 clean speeches 

and 7 noises representing room, fan, printer and open 

window environments, were played through a computer 

using one loudspeaker.  
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At the same time, a laptop was used to record 

wave files using a modified Siemens Optipoint500 phone

device, which was positioned at various different locations 

and angles with respect to the loudspeaker. All the data 

were recorded in 16 KHz and 16 bits.
The clean speech recordings were then mixed 

with the noise recordings to mimic various additive noisy 

environments. The global SNR ratios of mixed signals are 

set to [-5dB, 0dB, 5dB, 10dB]. There are total 4*7*4 = 

112 noisy mixtures. 

4.2. Experimental Results 

Using a small subset of the testing data, we optimized the 

parameters with respect to two different none-VAD based 

noise estimators, PSD and RM [7]. Within the SNR range 

of [-5dB, 10dB], the optimized values are 
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Several noise reduction algorithms are used to 

process the entire testing data set, including proposed and 

some cascading combinations, as shown in Table 1.  

Table 1 - Experimented noise reduction methods 

Method Description 
Process time on Xeon 

3.06GHz (ms/s) 

mix Unprocessed mixtures 0 

m1  Wiener + RM 62.81 

m2  Wiener + PSD 56.75 

m4 Spectral Subtraction + RM 41.27 

m5 Spectral Subtraction + PSD 35.19 

m10 Gustafsson + RM 66.15 

m11 Gustafsson + PSD 59.78 

m16 Parametric Wiener + RM 37.33 

m17 Parametric Wiener + PSD 30.94 

m17m17 m17 cascading m17 61.88 

m11m17 m11 cascading m17 90.72 

m17m11 m17 cascading m11 90.72 

Then the speech quality measurements of global 

SNR (gSNR), Itakura-Saito distance (IS), and weighted 

spectral slope (WSS), are calculated using processed and 

corresponding clean signals. Where IS and WSS measure 

the speech distortion, the higher value the less quality, and 

gSNR is vice versa [7].

Figure 2 shows a sample signal and its filtered 

results using some of the testing algorithms. The m2 

removes most noise, but causes severe distortion indicated 

by high IS and WSS. The m17 reduces less noise but has 

least distortion among none-cascading methods. The 

m17m17 further enhances m17 with even less distortions. 

The m11 reduces slight more noise than m17 with slight 

more distortions. The m11m17 enhances the m11 results. 

The m17m11 improves m17 with slight more distortions. 

Figure 2 – A sample signal and its filtering results: The 

numbers above each waveform plot are the speech 

quality measurements for that signal.  

 Figure 3 shows the average scores of entire data 

set with respect to different SNR level. The m1, m2, m4, 

m5 have very high distortion measurements. The m16, 

m17, m17m17 are best in at higher SNR, and m11 is better 

in lower SNR. The m11m17 and m17m11 are better in 

gSNR with slightly higher distortions. Listening to the 

subset of processed wave files have confirmed this results. 

5. CONCLUSIONS 

The experiment has shown that the proposed parametric 

Wiener filter is among the lowest distortion filters within 

the tested algorithms. The standard Wiener filter and 

spectral subtraction approaches are the highest distortion 

filters within the test. The parametric Wiener filter has 

slightly better performance at high SNR range, while the 

psycho-acoustically motivated Gustafsson filter slightly 

better at low SNR range. Cascading filters can improve 

gSNR, but also increase some distortion, unless both 

filters have very low distortions.  
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Our experimental parameterization approach can 

also be applied to other filtering methods besides the 

Wiener filter. The next goal is to explore this approach 

with more advanced filtering technologies, such as the 

Gustafsson or the Wolfe filter [9], and applying cascading 

to achieve better total denoising quality. 

The author wishes to thank J. Rosca and R. Balan 

at SCR for valuable discussion and suggestions. 
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Figure 3 - Average speech quality measurements of entire testing dataset. 
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