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ABSTRACT

A noise estimation algorithm is proposed for highly non-
stationary noise environments. The noise estimate is
updated by averaging the noisy speech power spectrum
using a time and frequency dependent smoothing factor,
which is adjusted based on signal presence probability in
subbands. Signal presence is determined by computing the
ratio of the noisy speech power spectrum to its local
minimum, which is computed by averaging past values of
the noisy speech power spectra with a look-ahead factor.
The local minimum estimation algorithm adapts very
quickly to highly non-stationary noise environments. This
was confirmed with formal listening tests that indicated
that our noise estimation algorithm when integrated in
speech enhancement was preferred over other noise
estimation algorithms.

1. INTRODUCTION

An important aspect of speech enhancement is noise
spectrum estimation. For stationary noise, averaging the
spectrum of the noisy signal during the initial silence
period can often be sufficient. That is not the case,
however, with non-stationary noise since the noise
spectrum will be varying rapidly over time. To overcome
this problem, the noise spectrum needs to be estimated
and updated continuously. This is a challenging task since
we only have access to the noisy speech signal. Noise
estimation algorithms are therefore needed which can
track the noise without explicitly doing speech/silence
detection.

Several algorithms have been proposed for
estimating the noise spectrum based on the noisy speech
signal. Martin [2] proposed a method which is based on
finding the minimum of the noisy speech over a window.
This method takes slightly more than the window duration
to update the noise spectrum when the noise floor
increases abruptly [2]. Doblinger’s method [1] updates the
noise estimate continuously and is computationally more
efficient. However, it fails to differentiate between an
increase in noise floor and an increase in the speech
spectrum level. Hirsch and Ehrlicher [3] update the noise
estimate by comparing the noisy speech power spectrum
to the past noise estimate. The major drawback of their
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method is that it fails to update the noise estimate when
the noise floor increases abruptly and stays at that level.
Similar problems are encountered with the method
proposed in [4]. Cohen and Berdugo [5] proposed an
algorithm which tracks the noise-only regions by finding
the ratio of the noisy speech to the local minimum over a
period of 0.5-1.5 sec. The noise estimate, however, lags
by at most twice that period when the noise spectrum
increases abruptly.

Most of the above noise estimation methods are slow
in adapting to increasing levels of noise. In this paper, we
propose a method which tracks the noise spectrum
quickly, even when the noise levels suddenly increase. It
uses a fast method for tracking the minimum of the noisy
speech power spectrum, and also makes use of the fact
that speech may be absent in some frequencies even in
speech-present frames. The advantage of this method over
other methods is that it updates the noise spectrum faster
since the minimum tracking is not constrained by a
specified time window and also does not overestimate the
noise spectrum.

This paper is organized as follows. Section 2 gives
the analysis of different noise estimation algorithms is
some detail. Section 3 presents the proposed method and
Section 4 presents our experimental results.

2. ANALYSIS OF EXISTING NOISE ESTIMATION
METHODS
Martin’s minimum statistics method [2] is based on the
observation that the power level of the noisy speech signal
often decays to the power level of the noise. Hence by
tracking the minimum of the noisy speech spectrum, we
can get an estimate of the noise spectrum. The spectral
minima in each frequency bin is sought over a window of
approximately 1.5 secs, and then compared with the
power spectrum of the noisy speech after bias
compensation. The local minimum is updated whenever
the power spectrum of the noisy speech is smaller than the
local minimum with some bias compensation. To make
the adaptation faster, the window is subdivided into
smaller windows and the noise estimate is updated in
every sub-window. In spite of that, the algorithm lags
behind particularly when there is sudden rise in the noise
power. It takes slightly more than the window length (1.5
secs) to track the new noise floor [2]. Reducing the
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window duration within which the minimum is sought
may result in speech distortion particularly if the speech
extends continuously for more than the window duration.

Cohen and Berdugo [5] introduced a minima
controlled recursive averaging approach  for noise
estimation. The noise estimate is updated continuously by
averaging the past spectral values of the noisy speech with
time and frequency-dependent smoothing factors. The
smoothing factors are controlled by the ratio of the noisy
speech power spectrum to its local minimum found over a
period of 0.5-1.5 secs. The method is based on the
principle that if the estimated ratio is less than some fixed
threshold, then it is taken as noise-only region and the
noise estimate is updated accordingly. This method also
suffers from the similar problem as [2] when there is a
sudden increase in noise power. It takes at most 3 secs to
update the local minimum.

Doblinger [1] proposed an efficient method for
tracking the noise spectrum that was not constrained by
any window length for updating the estimate of the noise
spectrum. In his algorithm, the noise estimate is updated
by averaging the past values of noisy speech power
spectrum in a way that it tracks the minimum of the noisy
speech in each frequency band. The adaptation period is
around 0.2-0.4 secs. The major drawback of this
algorithm, however, is that the noise estimate increases
whenever the noisy speech power increases. This
overestimation of the noise power level can produce
speech distortion.

The method proposed by Hirsch and Ehrlicher [3], is
based on estimating a histogram of past spectral values,
which are compared against a threshold. The histogram is
found over the past 400ms of noise segments and the
maximum in each band is taken as the noise spectrum.
Since the threshold is based on the past noise estimate, the
algorithm fails to adapt when the noise estimate suddenly
increases. In that case, the threshold may always be less
than the current noisy speech power and hence the noise
spectrum estimate might never be updated.

In summary, the major drawback of most noise
estimation algorithms is that they are either slow in
tracking sudden increases of noise power or that they are
overestimating the noise energy resulting in speech
distortion. To overcome these drawbacks, we propose a
method, which updates the noise spectrum quickly
without overestimating the noise spectrum.

3. PROPOSED NOISE ESTIMATION ALGORITHM

Let y(n)=x(n)+d(n), where y(n) is the noisy speech signal,
x(n) is the clean signal and d(n) is the additive noise. The
smoothed power spectrum of the noisy speech signal can
be estimated using a first-order recursive formula as
follows:

P(A,k)=nP(A-1k) + (1-n)|Y(AL)| (1)

where 1Y(4.k)is an estimate of the short-time power
spectrum of y(n) obtained by wavelet-thresholding the
multitaper spectrum of y(n) [6], 1 is a smoothing constant,
A is the frame index and k is the frequency bin index.

Since the noisy speech power spectrum in the speech-
absent frames is equal to the power spectrum of the noise,
we can update the estimate of the noise spectrum by
tracking the speech-absent frames. To do that, we
compute the ratio of the energy of the noisy speech power
spectrum in three different frequency bands (low: 0-1
kHz, middle: 1-3 kHz, high: 3 kHz and above) to the
energy of the corresponding frequency band in the
previous noise estimate. The following three ratios are
computed:

LF MF
D Pk D> P(Ak)
§L(/1)= uf:l , §M (/1)= I;/I:FLFH
ZN(],—I,k) Z N(A-1,k)
k=1 k=LF +1 (2)
Fs/2
D PGk
_ k=MF+1
fH(/l)—m+—
Z N(A-1,k)
k=MF+1

where N(A,k) is the estimate of the noise power spectrum
at frame A, and LF, MF, Fs correspond to the frequency
bins of 1 kHz, 3 kHz and the sampling frequency
respectively. If the above three ratios (&, (1), ¢, (1), &, (1))

are all smaller than a threshold o, then it is concluded that
it is a speech-absent frame and the noise estimate is
updated according to:

N(A,k) = eN(A-1K) +(1-&)|Y (4, k) 3)

where € is a smoothing constant. If any or all of the
above three ratios are larger than the threshold o, then a
different algorithm is used for updating and estimating the
noise spectrum.

The proposed algorithm used for speech-present
segments is based on first finding the minimum of the
noisy speech spectrum, and using that minimum to
determine signal presence probability in subbands. The
signal presence probability is used to determine a
frequency-dependent smoothing parameter which replaces
the fixed smoothing constant € in Eq. (3).

The local minimum of the noisy speech is computed
by averaging the past spectral values with a look-ahead
factor as defined in [1]:

if P, A—1k)< P(Ak)
then

PmnO»,k)=vaa—l,k)+§g<P<x,k>—BP0»—1,k» “4)
(A, k) = P(Ak)

else P,

min
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where Pi,(A.K) denotes the local minimum of the noisy
speech power spectrum and [ and Yy are constants
determined experimentally. This method for computing
the local minimum is effective since it adapts to sudden
increases in noise power within 0.4-0.6 secs, which is
considerably fast compared to the adaptation period of the
local minimum in [2] and [5].

The approach taken to determine signal presence
probability in subbands is similar to that proposed in [5].

Let S/(A.k) 2P(A,K)/Pin(AK) denote the ratio between the

energy of the noisy speech to its local minimum. This
ratio is compared against a frequency-dependent threshold
and if it is found to be larger than that threshold, then the
corresponding frequency is considered to contain speech.
Note that the aforementioned problem with [1] is avoided
with the use of this ratio S(Ak). Figure 1 shows an
example of speech-presence determination. Using the
above ratio S/Ak), the new frequency-dependent
smoothing constant can be estimated as follows:

@ Lk ={al if S.(A,k)< (k)

o, otherwise

&)

where o, o, are smoothing constants (0p>0!;) and (k) is
a frequency-dependent threshold given by:

13 1<k<LF
S(ky=43 LF<k<MF (6)
S5 MF<k<Fs/2

Finally, after computing the frequency-depending
smoothing factor «, (4,k), the noise spectrum estimate is
updated according to:
N (A k) =a (L KNA-LK) +1-o (AL K)|[Y(R, )| (7)
To summarize, if the ratios defined in Eq. 2 indicate
that the current frame is a speech-absent frame, then Eq. 3
is used to update the noise spectrum. Otherwise, Eq. 7 is
used to update the noise spectrum.

Note that there are two major differences between our
method and that in [5] for estimating the smoothing
parameter o(A,k). First, in our method the threshold (k)
used to determine signal presence is frequency dependent,
while in [5], it was fixed. Second, we use a different
method for obtaining the minimum of the noisy speech
spectrum that adapts faster than the method used in [5].

Figure 2 shows an example noise spectrum estimated
with our algorithm and with Martin’s algorithm [2] for a
scenario in which the noise level suddenly increases. Our
algorithm is able to adapt to the new environment within
0.6 secs, while Martin’s algorithm required 1.5 secs to
adapt.

4. EXPERIMENTAL RESULTS
The proposed noise spectrum estimation method was
combined with a Wiener-type speech enhancement
algorithm [6], which had a spectral gain function of the
form:
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Fig 1: Top panel: Plot of estimated speech presence probability
based on the ratio Sr(A,k). Bottom panel: spectrogram of the
clean signal.
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Fig. 2. Comparison between the noise spectrum (for f=1.5 kHz)
estimated using the proposed algorithm (thick line) and Martin’s
[2] (dashed line) algorithm for a sentence corrupted by car noise
(t <1.8 s) followed by a sentence corrupted by multi-talker
babble (t>1.8 s).

CAk)
C(A, k) +1 N(A k)

where C(A,k) is the estimated clean speech spectrum

G(A k)=

®)

based on wavelet-thresholding the multitaper spectra of
the noisy speech signal, and gz, is a factor which is
dependent on the a posteriori segmental SNR [6]. Speech
was segmented into 20-ms frames using a Hamming
window with 50% overlap. The following parameters
were used in the implementation of the noise estimation
algorithm: a; =0.8, o, =1, =0.8,y=0.998,1=0.7, G
=1.3 and e=0.8.
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The performance of the proposed method was compared
with that of the other methods described in [1-3,5]. The
proposed noise estimation algorithm was evaluated using
formal listening tests and objective measures. To evaluate
the effect of adaptation speed on speech quality, we used
sets of sentences composed of a sequence of three
(concatenated) sentences, each corrupted by a different
type of noise. The three types of noise included multi-
talker (2 female and 2 male) babble, factory noise and
white noise. So, a typical triplet sentence set included a
sentence corrupted by multi-talker babble followed by a
sentence corrupted by factory noise, and followed by a
sentence corrupted by white noise, with no gap between
sentences. These sets of sentences reflect a scenario in
which the environment is rapidly changing, thereby
requiring a noise estimation algorithm with fast
adaptation. Twenty sets of triplet sentences taken from the
HINT [7] database were used in the listening tests. In
addition, 40 single sentences (20 corrupted by multi-talker
babble, and 20 corrupted by factory noise) were used for
testing. The overall SNR of the corrupted sentences was 5
dB for both conditions.

The quality of the enhanced speech obtained using the
proposed noise estimation algorithm was compared
against the quality of speech produced by four other noise
estimation algorithms using a paired-preference paradigm.
The same speech enhancement algorithm [6] was used in
all conditions. Six normal-hearing listeners participated in
the paired-preference tests (all were native speakers of
American English). The listeners were presented via
headphones pairs of sentences (single or triplet sets)
processed via two different noise estimation algorithms
and asked to indicate their preference in terms of having
better speech quality and least amount of distortion. The
order of the sentences in each comparison was
randomized for all listeners. Table 1 shows the percentage
of time listeners preferred the proposed noise estimation
method over the other methods. Table 1 also shows the
normalized mean squared error (MSE) between the
estimated and true noise spectra.

Results indicated that for the single sentences
corrupted by either babble or factory noise, the
performance of the proposed algorithm was comparable to
that of other algorithms. But for the triplet sentences in
which the noise type was changing, the proposed method
was preferred over all the other methods. We attribute
this outcome to the quicker adaptation of the proposed
method compared to the other methods.

5. CONCLUSION
In this paper, we presented a fast noise estimation
algorithm, which is well suited for rapidly varying noise
environments. The noise estimate was found by averaging
past spectral power values using a smoothing parameter
that was adjusted by the signal presence probability in

Method Single Noise Mixed Noise
Preference | MSE | Preference | MSE

Cohen and 60.8% 0.95 80.4% 1.12
Berdugo [5]
Doblinger 40.6% 0.52 82.2% 1.08
(1]

Hirsch and 47.8% 0.52 87.1% 0.87
Ehrlicher [3]

Martin [2] 55.0% 0.53 58.8% 0.94

Proposed - 0.54 - 0.75

Table 1: Percentage of preference for the proposed method
compared to other methods for single and mixed type noise. The
normalized mean squared error (MSE) between the estimated
and true noise spectra is also given.

subbands. Unlike other methods, the adaptation of this
frequency-dependent smoothing parameter did not depend
on a specified time window and was therefore fast. This
was substantiated by our formal listening tests results
which showed preference for our method compared to
other methods for estimating the noise spectrum.
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