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ABSTRACT

This paper deals with the problem of speech enhancement when
only a corrupted speech signal is available for processing. Kalman
filtering is known as an effective speech enhancement technique,
in which speech signal is usually modeled as autoregressive (AR)
model and represented in the state-space domain. Various ap-
proaches based on the Kalman filter are presented in the litera-
ture. They usually operate in two steps: first, additive noise and
driving process statistics and speech model parameters are esti-
mated and second, the speech signal is estimated by using Kalman
filtering. In this paper sequential estimators are used for sub-
optimal adaptive estimation of the unknown a priori driving pro-
cess and additive noise statistics simultaneously with the system
state. The estimation of time-varying AR signal model is based
on robust recursive least-square algorithm with variable forgetting
factor. The proposed algorithm provides improved state estimates
at little computational expense.

1. INTRODUCTION

Speech enhancement using a single microphone system has be-
come an active research area for audio signal enhancement. Var-
ious approaches based on the Kalman filter are presented in the
literature. They usually operate in two steps: first, noise and driv-
ing process statistics and speech model parameters are estimated
and second, the speech signal is estimated by using Kalman fil-
tering. In fact these approaches differ only by the choice of the
algorithm used to estimate model parameters and the choice of the
models adopted for the speech signal and the additive noise.

Paliwal and Basu [1] have used estimates of the speech signal
parameters from clean speech, before being contaminated by white
noise. They then used a delayed version of Kalman filter in order
to estimate the speech signal.

Gibson et al. [2] have proposed a method that provides a sub-
optimal solution, which is a simplified version of the Estimate-
Maximize (EM) algorithm based on the maximum likelihood ar-
gument. However, noise variance was estimated during the silent
period, which implies the use of Voice Activity Detector (VAD).

Gabrea et al. [3] have proposed a method that avoids the ex-
plicit estimation of noise and driving process variances by estimat-
ing the optimal Kalman gain. After a preliminary Kalman filtering
with an initial sub-optimal gain, an iterative procedure is derived
to estimate the optimal Kalman gain using the property of the in-
novation sequence.

Grivel et al. [4] have suggested that the speech enhancement
problem can be stated as a realization issue in the framework of
identification. The state-space model was identified using a sub-
space non-iterative algorithm based on orthogonal projection.

In this paper the signal is modeled as an AR process and a
Kalman filter based-method is proposed. The sequential estima-
tors are derived for sub-optimal adaptive estimation of the un-
known a priori driving process and additive noise statistics simul-
taneously with the system state by reformulating and adapting the
classical approach used for control applications. First and second-
order moments of the additive noise and driving process are esti-
mated based on state and residual noise samples generated in the
Kalman filter algorithm. A limited memory algorithm is developed
for adaptive correction of the a priori statistics which are intended
to compensate for time-varying model errors. The algorithm in-
volves using the innovation sequence to estimate the additive noise
variance and the state corrections to estimate the driving process
variance. The estimation of time-varying AR signal model is based
on robust recursive least square algorithm with variable forgetting
factor. The variable forgetting factor is adapted to a nonstation-
ary signal by a generalized likelihood ratio algorithm through so-
called discrimination function, developed for automatic detection
of abrupt changes in stationarity of signal. The algorithm provides
improved state estimates at little computational expense. A distinct
advantage of the proposed algorithm is that a VAD is not required.

This paper is organized as follows. In Section II we present
the speech enhancement approach based on the Kalman filter al-
gorithm. Section III is concerned with the estimation of AR pa-
rameters, driving process and additive noise statistics. Simulation
results are the subject of Section IV.

2. NOISY SPEECH MODEL AND KALMAN FILTERING

The speech signal s(n) is modeled as a pth-order order AR process

s(n) =

p∑
i=1

ai(n)s(n − i) + u(n) (1)

y(n) = s(n) + v(n) (2)

where s(n) is the nth sample of the speech signal, y(n) is the nth
sample of the observation, and ai(n) is the ith AR parameter.

This system can be represented by the following state-space
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model

x(n) = F(n)x(n − 1) + Gu(n) (3)

y(n) = Hx(n) + v(n) (4)

where

1. the sequences u(n) and v(n) are uncorrelated Gaussian white
noise sequences with the means ū and v̄ and the variances
σ2

u and σ2

v

2. x(n) is the p × 1 state vector

x(n) = [s(n − p + 1) · · · s(n)]T

3. F(n) is the p × p transition matrix

F(n) =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
ap(n) ap−1(n) ap−2(n) · · · a1(n)

⎤
⎥⎥⎥⎥⎥⎦

4. G and H are, respectively, the p × 1 input vector and the
1 × p observation row vector which is defined as follows

H = G
T =

[
0 0 · · · 0 1

]
The standard Kalman filter [5] provides the updating state-

vector estimator equations

e(n) = y(n) − Hx̂(n/n − 1) − v̄ (5)

K(n) = P(n/n − 1)HT ×

×
[
HP(n/n − 1)HT + σ2

v

]
−1

(6)

x̂(n/n) = x̂(n/n − 1) + K(n)e(n) (7)

P(n/n) = [I − K(n)H]P(n/n − 1) (8)

x̂(n + 1/n) = F(n)x̂(n/n) + Gū (9)

P(n + 1/n) = F(n)P(n/n)FT (n) + GG
T σ2

u (10)

where

1. x̂(n/n − 1) is the minimum mean-square estimate of the
state vector x(n) given the past n − 1 observations y(1),
. . ., y(n − 1)

2. x̃(n/n − 1) = x(n) − x̂(n/n − 1) is the predicted state-
error vector

3. P(n/n−1) = E[x̃(n/n−1)x̃T (n/n−1)] is the predicted
state-error correlation matrix

4. x̂(n/n) is the filtered estimate of the state vector x(n)

5. x̃(n/n) = x(n) − x̂(n/n) is the filtered state-error vector

6. P(n/n) = E[x̃(n/n)x̃T (n/n)] is the filtered state-error
correlation matrix

7. e(n) is the innovation sequence

8. K(n) is the Kalman gain

The estimated speech signal can be retrieved from the state-vector
estimator

ŝ(n) = Hx̂(n/n) (11)

The parameter estimation (the transition matrix and noise statis-
tics) is presented in the next section.

3. PARAMETER ESTIMATION

The estimation of the transition matrix, which contains the AR
speech model parameters, was made using a adaptation of the ro-
bust recursive least square algorithm with variable forgetting factor
proposed by Milosavljevic et al. [6]. The estimation of the noise
statistics is derived under the assumption of the constant values
over N samples by reformulating and adapting the approach pro-
posed in control by Myers and Tapley [7].

3.1. Estimation of the Transition Matrix

In our approach, getting F(n) requires the AR parameter estima-
tion. The equation (3) can be rewritten in the form

s(n) = x
T (n − 1)θ(n) + u(n) (12)

where

θ(n) =
[

ap(n) ap−1(n) · · · a1(n)
]T

(13)

The robust recursive least square approach estimates the vector
θ̂(n) by minimising the M-estimation criterion [6]

Jn =
1

n

n∑
i=1

λn−iρ
[
ε2(i)

]
(14)

where

ψ(x) = ρ′(x) = min

[
|x|

σ2
u

,
∆

σu

]
sgn(x) (15)

is the Huber influence function and ∆ is a chosen constant. The
true state vector x(n) used in (12) is unknown but can be approxi-
mated by the state-vector estimator x̂(n/n). In this case the robust
recursive least square approach gives the estimation equations

ε(i) = Hx̂(i/i) − x̂
T (i − 1/i − 1)θ̂(i − 1) (16)

g(i) =
Q(i − 1)x̂(i − 1/i − 1)

λ(i) + ψ′ [ε(i)] x̂T (i − 1/i − 1)Q(i − 1)x̂(i − 1/i − 1)

(17)

Q(i) =
1

λ(i)

[
Q(i − 1) − g(i)x̂T (i − 1/i − 1)Q(i − 1)ψ′ [ε(i)]

]
(18)

θ̂(i) = θ̂(i − 1) + Q(i)x̂(i − 1/i − 1)ψ [ε(i)] (19)

The forgetting factor λ(i) is a data weighting factor that is used to
weight recent data more heavily and thus to permit tracking slowly
varying signal parameters. If a nonstationary signal is composed
of stationary subsignals the estimation of the AR parameters can
be given by using a forgetting factor varying between λmin and
λmax. The modified generalized likelihood ratio algorithm [8] is
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used for the automatic detection of abrupt changes in stationarity
of signal. This algorithm uses three models of the same structure
and order, whose parameters are estimated on fixed length win-
dows of signal. These windows are [i − N + 1, i], [i + 1, i + N ]
and [i − N + 1, i + N ], and move one sample forward with each
new sample. In the first step of this algorithm is calculated the
discrimination function

D(i, N) = L(i−N +1, i+N)−L(i−N+1, i)−L(i+1, i+N)
(20)

where

L(a, b) = (b − a + 1)ln

[
1

b − a + 1

d∑
i=a

ε2(i)

]
(21)

denotes the maximum of the logarithmic likelihood function. In
the second step a strategy for choosing the variable forgetting fac-
tor is defined by letting λ(i) = λmax when D = Dmin and
λ(i) = λmin when D = Dmax, as well as by taking the linear
interpolation between these values.

3.2. Estimation of Additive Noise Statistics

The estimation of additive noise statistics is derived under the as-
sumption of the constant mean and variance over N samples v(n),
v(n − 1), · · · , v(n −N + 1). Using the equation (4) the samples
of the additive noise are given by the equation

v(n) = y(n) −Hx(n) (22)

The true states vector x(n) is unknown, so v(n) cannot be deter-
mined, but the approximation

α(n) = y(n) − Hx̂(n/n − 1)

= Hx̃(n/n − 1) + v(n) (23)

can be used [7]. The samples α(n) are assumed to be represen-
tative of v(n) and can be considered independent and identically
distributed [7]. Based on the last N samples α(n), α(n − 1), · · · ,
α(n−N+1) the mean ᾱ(n) and the variance σ2

α(n) are estimated.
An unbiased esimator for ᾱ(n) is taken as the sample mean

ˆ̄α(n) =
1

N

N−1∑
i=0

α(n − i) (24)

and an unbiased estimator for σ2

α(n) is obtained by

σ̂2

α(n) =
1

N − 1

N−1∑
i=0

[α(n − i) − ˆ̄α(n)]2 (25)

The estimation of the additive noise mean is

ˆ̄v(n) = ˆ̄α(n) (26)

If the samples α(n) are considered independent and identically
distributed the expected value of σ̂2

α(n) is

E{σ̂2

α(n)} =
1

N

N−1∑
i=0

HP(n/n − 1)HT + σ2

v (27)

Using (25) and (27) an unbiased estimator of σ2

v(n) is given by

σ̂2

v =
1

N − 1
{

N−1∑
i=0

[α(n − i) − ˆ̄α(n)]2

−
N − 1

N
HP(n − i/n − i − 1)HT } (28)

3.3. Estimation of Driving Process Statistics

The estimation of driving process statistics is derived under the
assumption of the constant mean and variance over N samples
u(n), u(n − 1), · · · , u(n − N + 1). Using the state propagation
equation (3) the samples of the driving process are given by the
equation:

u(n) = H[x(n) − Fx(n − 1)] (29)

The true state vectors x(n) and x(n − 1) are unknown, so u(n)
cannot be determined, but the approximation

β(n) = H[x̂(n/n) − x̂(n/n − 1)] (30)

can be used [7]. The samples β(n) are assumed to be represen-
tative of u(n) and can be considered independent and identically
distributed [7]. Based on the last N measurements the mean β̄(n)
and the variance σ2

β(n) are estimated [9]. An unbiased estimator
for β̄(n) is taken as the sample mean

ˆ̄β(n) =
1

N

N−1∑
i=0

β(n − i) (31)

and an unbiased estimator for σ2

β(n) is obtained by

σ̂2

β(n) =
1

N − 1

N−1∑
i=0

[β(n − i) − ˆ̄β(n)]2 (32)

The esimation of the additive noise mean is

ˆ̄u(n) = ˆ̄β(n) (33)

If the samples β(n) are considered independent and identically
distributed the expected value of σ̂2

β(n) is

E{σ̂2

β(n)} =
1

N

N−1∑
i=0

E{[β(n − i)]2} (34)

The analysis reduces to expanding E{[β(n − i)]2} in term of σ2

u.
We write β(n) in term of the filtered state-error vectors.

β(n) = −Hx̃(n/n) + HFx̃(n − 1/n − 1) + u(n) − ū (35)

Since the filtered state-error vectors errors are not independent, the
correlation are avoided by writing

β(n) + Hx̃(n/n) = HFx̃(n − 1/n − 1) + u(n) − ū (36)

The variance of this equation is

E{[β(n) + Hx̃(n/n)]2} = HFP(n − 1/n − 1)FT
H

T + σ2

u

(37)
Now we develop E{[β(n)−Hx̃(n/n)]2} in term of E{[β(n)]2}
and of other computed terms in the Kalman filter

E{[β(n) + Hx̃(n/n)]2} = E{[β(n)]2}

+ 2E{β(n)x̃T (n/n)HT }

+ HP(n/n)HT (38)

Using the Kalman filter equations the filtered state-error vector can
be rewritten as

x̃(n/n) = [I− K(n)H]x̃(n/n − 1) − K(n)[v(n) − v̄] (39)
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and the second term in (37) is

E{β(n)x̃T (n/n)HT } = −HP(n/n)HT

+ HP(n/n − 1) ×

× [I − K(n)H]T H
T (40)

Using (32) (34) and (37) an unbiased estimator of σ2

u(n) is given
by

σ̂2

u =
1

N − 1
{

N−1∑
i=0

[β(n − i) − ˆ̄β(n)]2

−
N − 1

N
HFP(n − i − 1/n − i − 1)FT

H
T

−
N − 1

N
HP(n − i/n − i)HT

+ 2
N − 1

N
HP(n − i/n − i − 1) ×

× [I − K(n − i)H]T H
T } (41)

4. SIMULATION RESULTS

The approach was tested using a speech signal and an additive
Gaussian white noise. The speech signals are sentences from the
TIMIT database. Figure 1 represents, respectively, the noise-free
speech signal, the noisy speech signal and the enhanced speech
signal. For this example, the SNR of the noisy speech signal is 0
dB. Table 1 offers a comparison with others approaches, by show-
ing averaged SNR gain based on 10 speech signals and 10 noise
simulations for each speech signal.

Output SNR
Input SNR [2] [3] [10] proposed

(dB) (dB) (dB) (dB) (dB)

-5.00 2.46 -2.52 -1.46 2.61
0.00 4.57 2.61 2.65 4.95
5.00 7.96 6.83 7.08 8.52

10.00 11.92 10.95 11.46 12.71
15.00 16.00 15.08 15.34 16.86

Table 1. OUTPUT SNR FOR AN INPUT SPEECH SIGNAL PLUS

WHITE NOISE

For input SNR between -5 and 15 dB the proposed method
provides better results than two previously proposed methods by
the author [3][10] and Gibson’s algorithm [2]. Gibson’s algorithm
[2], needs two to three iterations to get the highest SNR gain. Its
computational requirements are higher, since a voice activity de-
tector is required to determine silence periods.
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