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ABSTRACT

The decision-directed approach of Ephraim and Malah is widely
used for a priori SNR estimation and speech enhancement. How-
ever, it conflicts with common model assumptions. In this pa-
per, we propose recursive estimators for the a priori SNR and
the speech spectral components. We introduce a novel statisti-
cal model that takes into account the time-correlation between
successive speech spectral components, while keeping the result-
ing algorithms simple. This model provides new insight into the
decision-directed approach, and enables the extension of exist-
ing speech enhancement algorithms to noncausal estimation. The
causal a priori SNR estimator degenerates, as a special case, to
a “decision-directed” estimator with a time-varying frequency-
dependent weighting factor. The noncausal estimator is capable
of discriminating between speech onsets and noise irregularities,
achieving lower levels of both musical noise and speech distor-
tion.

1. INTRODUCTION

Two decades ago, Ephraim and Malah proposed a popular statisti-
cal model for speech enhancement [1]. Accordingly, the individual
short-term spectral components of the speech and noise signals are
modeled as statistically independent Gaussian random variables.
The assumption of statistical independency is clearly unfulfilled.
However, it facilitates a mathematically tractable derivation of use-
ful estimators for various distortion measures [1–3]. Cappé [4]
showed that the dominant factor in the Ephraim-Malah algorithm
is the decision-directed estimation approach for the a priori SNR.
Unfortunately, this approach conflicts with the model assumptions.
On the one hand, spectral components are assumed statistically
independent when deriving analytical expressions for the speech
estimators. On the other hand, the a priori SNR estimate heav-
ily relies on the strong time-correlation between successive speech
spectral components.

In this paper, we propose estimators for the a priori SNR
and the speech spectral components. We introduce a novel sta-
tistical model that takes into account the time-correlation between
successive speech spectral components, while keeping the result-
ing algorithms simple. This model provides new insight into the
decision-directed approach, and enables the extension of existing
algorithms to noncausal estimation. In the proposed model, the se-
quence of speech spectral variances is a random process, which
is correlated with the sequence of speech spectral components.
Causal and noncausal estimators for the a priori SNR are derived
in agreement with the model assumptions and the estimation of the
speech spectral components. We show that the causal a priori SNR

estimator degenerates, as a special case, to a “decision-directed”
estimator with a time-varying frequency-dependent weighting fac-
tor. Furthermore, the noncausal estimator, having a few subse-
quent spectral measurements at hand, is capable of discriminating
between speech onsets and noise irregularities. This yields lower
levels of both musical noise and speech distortion.

In Sec. 2, we formulate the speech enhancement problem. In
Sec. 3, we present the statistical model. In Sec. 4, we derive esti-
mators for the speech spectral components and the a priori SNR.
In Sec. 5, we address the relation to the decision-directed estima-
tion approach. Finally, in Section 6, we discuss the advantages of
the proposed estimation approach.

2. PROBLEM FORMULATION

Let x(n) and d(n) denote speech and uncorrelated additive noise
signals, respectively, where n is a discrete-time index. Applying
the short-time Fourier transform (STFT) to the observed signal
y(n), we have in the time-frequency domain

Y�(k) = X�(k) + D�(k) (1)

where k is the frequency-bin index and � is the time frame index.
Let Y�′

0 (k) = {Y0(k), . . . , Y�′(k)} denote a set of spectral mea-

surements, and let d
[
X�(k), X̂�(k)

]
be a given distortion measure

between X�(k) and X̂�(k). Our objective is to find an estimator
X̂�(k), which minimizes the conditional expected value of the dis-
tortion measure, given the set of spectral noisy measurements

X̂�(k) = arg min
X̂

E
{

d
[
X�(k), X̂

]
| Y�′

0 (k)
}

. (2)

We consider a causal estimation of X�(k) (in which case �′ = �),
as well as a noncausal estimation (in which case �′ > �)1, while
the spectral components are not assumed statistically independent.
Therefore, in contrast to existing spectral enhancement techniques,
the estimation problem is not formulated as that of estimating
X�(k) from Y�(k) alone.

3. SPEECH SPECTRAL MODEL

The relation between successive spectral components of a speech
signal, in comparison with a noise signal, can be investigated
by evaluating the autocorrelation sequences of the STFT coeffi-
cients along time-trajectories (the frequency-bin index k is held

1Note that causality is defined with respect to the spectral components,
rather than with respect to the samples in the time domain.
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fixed). The time-correlation between successive spectral magni-
tudes of speech signals is shown bo be much higher than that of
white Gaussian noise [5]. To enable recursive estimators for the
speech spectral components and the a priori SNR, while keeping
the resulting algorithms simple, we propose the following statisti-
cal model:

1. The noise spectral components D�(k) are statistically in-
dependent zero-mean complex Gaussian random variables.
The real and imaginary parts of D�(k) are independent and
identically distributed (IID).

2. The speech spectral phases � X�(k) are IID uniform ran-
dom variables on [−π, π].

3. For a fixed frequency-bin index k, the sequence of
speech spectral magnitudes {A�(k) | � = 0, 1, . . .} is a

random process, where A�(k)
�
= |X�(k)|. For k �=

k′, the two random processes {A�(k) | � = 0, 1, . . .} and
{A�(k

′) | � = 0, 1, . . .} are statistically independent.

4. Let λX�
(k)

�
= E

{
|X�(k)|2

}
denote the speech spectral

variance. Then given λX�
(k), a spectral component X�(k)

is a zero-mean complex Gaussian random variable with IID
real and imaginary parts.

5. The sequence of speech spectral variances
{λX�

(k) | � = 0, 1, . . .} is a random process. For
fixed k and �, λX�

(k) is correlated with the sequence
of speech spectral magnitudes {A�′(k) | �′ = 0, 1, . . .}.
However, given λX�

(k), X�(k) is statistically independent
of X�′(k) for �′ �= �.

We note that the fundamental difference between the proposed sta-
tistical model and that of Ephraim and Malah stems from the last
assumption.

4. SIGNAL ESTIMATION

In this section, we derive an estimator for X�(k) based on the pro-
posed statistical model. We assume knowledge of the noise PSD,
which in practice can be estimated by using the Minima Controlled
Recursive Averaging approach [6]. For notational simplicity, the
frequency-bin index k is henceforth omitted.

4.1. Spectral Enhancement

Let p
(
X� | Y

�′

0

)
denote the conditional pdf of a speech spectral

component X� given the noisy measurements Y�′

0 . Then, the spec-
tral estimator X̂� is obtained by minimizing

E
{

d
(
X�, X̂�

)
| Y�

0

}
=

∫
d

(
X, X̂

)
p

(
X� | Y

�′

0

)
dX� . (3)

Since the statistical model is generally nonlinear, and there ex-
ists no simple solution for the spectral estimation, we first derive

an estimate for λX�
from the noisy measurements Y�′

0 , λ̂X�|�
′

�
=

E
{
|X�|

2 | Y�′

0

}
, and subsequently obtain the spectral estimator

X̂�. The proposed statistical model implies

p
(
X� | Y

�′

0 , λX�

)
= p (X� |Y�, λX�

) (4)

for �′ ≥ �. Hence, given λ̂X�|�
′ , we may compute a spectral esti-

mate from

min
X̂�

∫
d

(
X�, X̂�

)
p

(
X� |Y�, λ̂X�|�

′

)
dX�

= min
X̂�

E
{

d
(
X�, X̂�

)
| Y�, λ̂X�|�

′

}
. (5)

This problem, when the a priori SNR is defined appropriately, is
essentially the classical spectral enhancement problem as formu-
lated by Ephraim and Malah [1, 2]. As a result, an estimate for
X� is obtained by applying a spectral gain function to each noisy
spectral component of the speech signal:

X̂� = G
(
ξ�|�′ , γ�

)
Y� (6)

where the a priori and a posteriori SNR’s are defined respectively
by2

ξ�|�′
�
=

λX�|�
′

λD�

; γ�
�
=

|Y�|
2

λD�

(7)

and where λD�

�
= E

{
|D�|

2} denotes the noise spectral vari-
ance. The specific expression for the spectral gain function
G

(
ξ�|�′ , γ�

)
depends on the particular choice of a distortion mea-

sure d
(
X�, X̂�

)
[3].

4.2. Causal Recursive A Priori SNR Estimation

In this subsection, we propose a causal recursive estimator ξ̂�|� for
the a priori SNR. The estimator combines a “propagation” step
and an “update” step, following the rational of Kalman filtering,
to recursively predict and update the estimate for λX�

as new data
arrive.

Suppose we are given an estimate λ̂X�|�−1, and a new noisy
spectral component Y� is observed. Then, the estimate for λX�

can
be updated by computing the conditional variance of X� given Y�

and λ̂X�|�−1:

λ̂X�|� = E
{
|X�|

2 | λ̂X�|�−1 , Y�

}
= var

{
X� | λ̂X�|�−1 , Y�

}
+

∣∣∣E {
X� | λ̂X�|�−1 , Y�

}∣∣∣2 .(8)

Since we assume that X�|λX�
and D� are statistically indepen-

dent Gaussian complex variables, the conditional distribution of
X�|λX�

given Y� is Gaussian with mean and variance

E {X� |λX�
, Y�} =

λX�

λX�
+ λD�

Y� (9)

var {X� |λX�
, Y�} =

λX�

λX�
+ λD�

λD�
. (10)

Substituting (9) and (10) into (8), we have

λ̂X�|� =
λ̂X�|�−1

λ̂X�|�−1 + λD�

(
λD�

+
λ̂X�|�−1 |Y�|

2

λ̂X�|�−1 + λD�

)
. (11)

Using (7) and dividing both sides of (11) by λD�
, we have

ξ̂�|� =
ξ̂�|�−1

1 + ξ̂�|�−1

(
1 +

ξ̂�|�−1 γ�

1 + ξ̂�|�−1

)
. (12)

2Note that in [1], the a priori SNR is defined by ξ� = λX�
/ λD�

,
where the variance λX�

is a parameter of the prior pdf of X�.
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Table 1. Summary of the Causal Recursive Speech Enhancement
Algorithm.

Initialization: Â−1 = 0 , ξ̂−1|−1 = ξmin .
For all short-time frames � = 0, 1, . . .

Obtain ξ̂�|�−1 by using the “propagation” step (14).
Obtain ξ̂�|� by using the “update” step (12).
Estimate the speech spectral component X� by (6) and (7).

We call (12) the “update” step. Assume we are given at frame
�− 1 estimates for A�−1 and λX�−1

, conditioned on Y�−1
0 . Then,

these estimates can be “propagated” in time to obtain an estimate
for λX�

. Since λX�
is correlated with both λX�−1

and A�−1, we
propose to use a first-order predictor of the form

λ̂X�|�−1 = max
{

(1 − α)λ̂X�−1|�−1 + αÂ2
�−1 , λmin

}
(13)

where α (0 ≤ α ≤ 1) is related to the degree of nonstation-
arity of the random process {λX�

| � = 0, 1, . . .}, and λmin is a
lower bound on the variance of X�. Dividing both sides of (13) by
λD�−1

, we obtain the “propagation” step

ξ̂�|�−1 = max

{
(1 − α)ξ̂�−1|�−1 + α

Â2
�−1

λD�−1

, ξmin

}
(14)

where ξmin is a lower bound on the a priori SNR. The steps of the
causal recursive spectral enhancement algorithm are summarized
in Table 1.

4.3. Noncausal Recursive A Priori SNR Estimation

Now we propose a noncausal recursive estimator ξ̂�|�+L for the
a priori SNR, given the noisy measurements up to frame � + L,
where L > 0 denotes the admissible time delay in frames.

Let λ′
X�|�+L

�
= E

{
A2

� | Y�−1
0 ,Y�+L

�+1

}
and λ� | [�+1,�+L]

�
=

E
{
A2

� | Y�+L
�+1

}
denote conditional spectral variances of X�. An

estimate for λ� given λ̂′
X�|�+L and Y� can be updated similarly to

(11) by using the “update” step

ξ̂�|�+L =
ξ̂′�|�+L

1 + ξ̂′
�|�+L

(
1 +

ξ̂′�|�+L γ�

1 + ξ̂′
�|�+L

)
. (15)

To obtain an estimate for λ′
X�|�+L, we employ the estimates Â�−1

and λ̂�−1|�+L−1 from the previous frame, and derive an esti-
mate for λX�

from the measurements Y�+L
�+1 . Suppose an estimate

λ̂� | [�+1,�+L] is given, we propose to propagate the estimates from
frame � − 1 to frame � by

λ̂′
�|�+L = max

{
αÂ2

�−1 + (1 − α)
[
α′ λ̂�−1|�+L−1

+(1 − α′)λ̂� | [�+1,�+L]

]
, ξmin

}
(16)

where α (0 ≤ α ≤ 1) is related to the degree of nonstationarity of
the random process {λX�

| � = 0, 1, . . .}, and α′ (0 ≤ α′ ≤ 1) is
associated with the reliability of the estimate λ̂� | [�+1,�+L] in com-
parison with that of λ̂�−1|�+L−1. Dividing both sides of (16) by

Table 2. Summary of the Noncausal Recursive Speech Enhance-
ment Algorithm.

Initialization: Â−1 = 0 , ξ̂−1|L−1 = ξmin .
For all short-time frames � = 0, 1, . . .

Obtain ξ̂� | [�+1,�+L] by ”backward estimation” (18).
Obtain ξ̂′�|�+L by “backward-forward propagation” (17).
Obtain ξ̂�|�+L by the “update” step (15).
Estimate the speech spectral component X� by (6) and (7).

λD�−1
, we have the following “backward-forward propagation”

step:

ξ̂′�|�+L = max

{
α

Â2
�−1

λD�−1

+ (1 − α)
[
α′ ξ̂�−1|�+L−1

+(1 − α′)ξ̂� | [�+1,�+L]

]
, ξmin

}
. (17)

An estimate for the a priori SNR ξ� given the measurements Y�+L
�+1

is obtained by

ξ̂� | [�+1,�+L] =

{
1
L

∑L

n=1 γ�+n − β , if nonnegative,
0 , otherwise,

(18)
where β (β ≥ 1) is an over-subtraction factor to compensate for
a sudden increase in the noise level. This estimator is an anti-
causal version of the maximum-likelihood a priori SNR estimator
suggested in [1]. The steps of the noncausal recursive spectral en-
hancement algorithm are summarized in Table 2.

5. RELATION TO “DECISION-DIRECTED”
ESTIMATION

The proposed causal recursive estimator ξ̂�|� for the a priori SNR
is closely related to the decision-directed estimator of Ephraim and
Malah [1]. The decision-directed estimator is given by

ξ̂DD
�|� = w

Â2
�−1

λD�−1

+ (1 − w) max {γ� − 1, 0} (19)

where w (0 ≤ w ≤ 1) is a weighting factor that controls the
trade-off between the noise reduction and the transient distortion
introduced into the signal [1,4]. The update step (12) of the causal
recursive estimator can be written as

ξ̂�|� = α� ξ̂�|�−1 + (1 − α�)(γ� − 1) (20)

where α� is defined by

α�
�
= 1 −

ξ̂2
�|�−1(

1 + ξ̂�|�−1

)2 . (21)

Substituting (14) into (20) and (21) with the parameter α set to 1,
and applying the lower bound constraint to ξ̂�|� rather than ξ̂�|�−1,
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Fig. 1. SNR’s in successive short-time frames: A posteriori SNR γ� (dotted line), decision-directed a priori SNR ξ̂DD
�|� (dashed line), and

(a) causal recursive a priori SNR estimate ξ̂�|� (solid line); (b) noncausal recursive a priori SNR estimate ξ̂�|�+3 (solid line).

we have

ξ̂�|� = max

{
α�

Â2
�−1

λD�−1

+ (1 − α�)(γ� − 1) , ξmin

}
,(22)

α� = 1 −
Â4

�−1(
λD�−1

+ Â2
�−1

)2 . (23)

The expression (22) with α� ≡ w is actually a practical form of
the decision-directed estimator,

ξ̂DD
�|� = max

{
w

Â2
�−1

λD�−1

+ (1 − w)(γ� − 1) , ξmin

}
, (24)

that includes a lower bound constraint to further reduce the
level of residual musical noise [4]. Accordingly, a special case
of the causal recursive estimator with α ≡ 1 degenerates to
a “decision-directed” estimator with a time-varying frequency-
dependent weighting factor α�.

6. DISCUSSION

The weighting factor α� in (23) is monotonically decreasing as
a function of the instantaneous SNR, Â2

�−1/ λD�−1
. A decision-

directed estimator with a larger weighting factor is indeed prefer-
able during speech absence (to reduce musical noise phenomena),
while a smaller weighting factor is more advantageous during
speech presence (to reduce signal distortion) [4]. The special case
of the causal recursive estimator conforms to such a desirable be-
havior. Moreover, the general form of the causal recursive esti-
mator provides an additional degree of freedom for adjusting the
value of α in (14) to the degree of spectral nonstationarity. This
may further improve the performance.

The different behaviors of the causal recursive estimator and
the decision-directed estimator are illustrated in the example of
Fig. 1. The analyzed signal contains only white Gaussian noise
during the first and last 20 frames, and in between it contains an
additional sinusoidal component at the displayed frequency with
0 dB SNR. The signal is transformed to the STFT domain by using
half overlapping Hamming windows. The a priori SNR estimates
are obtained by using the spectral gain function, which minimizes
the mean squared error of the log-spectral amplitude [2], and the
parameters ξmin = −25 dB, α = 0.9, w = 0.98. It shows that
when the a posteriori SNR γ� is sufficiently low, the proposed a

priori SNR estimate is smoother than the decision-directed esti-
mate, which helps reducing the level of musical noise. When γ�

increases, the response of ξ̂�|� is initially slower than ξ̂DD
�|� , but it

then builds up faster to the a posteriori SNR. When γ� is suffi-
ciently high, ξ̂DD

�|� follows the a posteriori SNR with a delay of 1

frame, whereas ξ̂�|� follows the a posteriori SNR instantaneously.
When γ� decreases, the response of ξ̂�|� is immediate, while that
of ξ̂DD

�|� is delayed by 1 frame.
Figure 1(b) demonstrates the behavior of the noncausal recur-

sive estimator. The noncausal a priori SNR estimate ξ̂�|�+3 is ob-
tained with the parameters ξmin = −25 dB, α = α′ = 0.9, β = 2,
and L = 3 frames delay. The differences between the causal and
noncausal recursive estimators are primarily noticeable during on-
sets of signal components. Clearly, the causal a priori SNR esti-
mator, as well as the decision-directed estimator, cannot respond
too fast to an abrupt increase in γ�, since it necessarily implies an
increase in the level of musical residual noise. By contrast, the
noncausal estimator, having a few subsequent spectral measure-
ments at hand, is capable of discriminating between speech onsets
and irregularities in γ� corresponding to noise only. Experimental
results [5] confirm that the advantages of the noncausal recursive
estimator are particularly perceived during onsets of speech and
noise only frames. Onsets of speech are better preserved, while a
further reduction of musical noise is achieved.
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