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ABSTRACT

Structured language models have recently been shown to give sig-
nificant improvements in large-vocabulary recognition relative to
traditional word N-gram models, but typically imply a heavy com-
putational burden and have not been applied to large training sets
or complex recognition systems. In previous work, we developed
a linguistically motivated and computationally efficient almost-
parsing language model using a data structure derived from Con-
straint Dependency Grammar parses that tightly integrates knowl-
edge of words, lexical features, and syntactic constraints. In this
paper we show that such a model can be used effectively and effi-
ciently in all stages of a complex, multi-pass conversational tele-
phone speech recognition system. Compared to a state-of-the-art
4-gram interpolated word- and class-based language model, we
obtained a 6.2% relative word error reduction (a 1.6% absolute re-
duction) on a recent NIST evaluation set.

1. INTRODUCTION
Structured language models (LMs) have recently been shown to
give significant improvements in large-vocabulary recognition rel-
ative to traditional word N-gram models, but often imply a heavy
computational burden at training and/or test time, and have there-
fore not been used in state-of-the-art research systems. Such sys-
tems are typically trained on hundreds of hours of speech and
hundreds of millions of words of text and transcripts. In [1, 2],
we developed an almost-parsing language model (LM) within the
Constraint Dependency Grammar framework that is computation-
ally efficient because it does not require expectation maximiza-
tion (EM) in training and takes the form of a simple class-based
N-gram model in testing. We have evaluated the almost-parsing
LM on a variety of large-vocabulary continuous speech recogni-
tion (CSR) tasks in an N-best rescoring framework, and found that
it reduced recognition error rates significantly, achieving perfor-
mance competitive with state-of-the-art parser-based LMs [3, 4].
In this paper, we investigate the performance of the almost-parsing
LM in conversational telephone speech (CTS) recognition, in the
context of a complex, multi-pass recognition system. Section 2
provides a brief description of SRI’s English CTS system and the
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acoustic and language model training data. Section 3 reviews the
SuperARV almost-parsing LM and Section 4 describes how we in-
tegrated the LM into the recognition system. Results are reported
in Section 5, followed by conclusions.

2. THE SRI ENGLISH CTS SYSTEM
2.1. Brief system description

The SRI 2003 CTS system performs an almost-parallel decoding
of the speech data using two sets of acoustic models, one based
on HLDA-normalized MFCC cepstral features, the other based on
PLP features normalized using a traditional LDA followed by an
MLLT diagonalizing transformation [5]. Both MFCC and PLP
subsystems use 3rd-order differentials in the original feature vec-
tors. At various points in the processing, the two systems exchange
information via cross-adaptation and finally N-best ROVER sys-
tem combination [5]. Language models of increasing orders are
used for initial decoding and lattice generation, lattice expansion
and rescoring, and finally N-best rescoring. Details on the process-
ing stages are presented in Section 5.

2.2. Training data

Acoustic models were trained on LDC’s Switchboard-1 corpus,
the Credit Card corpus, the CallHome English corpus, transcribed
Switchboard Cellular data released by LDC, and the Switchboard-
2 data transcribed by CTRAN and released by BBN, for a total of
418 hours of speech.

The class-conditioned mixture LMs used in the baseline sys-
tem and almost-parsing LMs were trained on the acoustic training
transcripts for all the above sources, as well as the 1996 Broadcast
News Hub-4 LM training corpus (130M words). An additional
191M words of LM training data were retrieved from the Web
through the Google search engine by searching for conversational
N-grams extracted from the CTS transcripts [6]. Furthermore,
102M words of data relevant to the topics of the Switchboard-2
and LDC Fisher data collections was selected from Google news-
groups, in an attempt to better match the unseen CTS test data
drawn from those collections [5].

3. THE SUPERARV LANGUAGE MODEL
The SuperARV LM [1] is a highly lexicalized probabilistic LM
based on Constraint Dependency Grammars (CDGs). It tightly in-
tegrates multiple knowledge sources, for example, word identity,
lexical features that have synergy with syntactic analyses (e.g.,
gapp, mood), and syntactic and semantic constraints at both the
knowledge representation level and model level.

The first type of integration was achieved by introducing a lin-
guistic structure, called a super abstract role value (SuperARV),
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pronoun
case=common
behavior=nominal
type=interrogative
semtype=inanimate
agr=3s

G=np-4

verb
subcat=base
verbtype=past
voice=active
inverted=yes
type=none
gapp=yes
mood=whquestion
semtype=auxiliary
agr=all

G=vp-1
Need1=S-3
Need2=S-4
Need3=S-2

pronoun
case=common
behavior=nominal
type=personal
semtype=human
agr=2s

G=subj-2

   1
        what

          2
        did

 3
        you

The SuperARV of the word "did":

 Category: Verb

 4
        learn

verb
subcat=obj
vtype=infinitive
voice=active
inverted=no
type=none
gapp=yes
mood=whquestion
semtype=behavior
agr=none

G=vp-2
Need1=S-4
Need2=S-1
Need3=S-4

 Features: {verbtype=past, voice=active, inverted=yes, 
 gapp=yes,mood=whquestion,agr=all}

 Role=G,         Label=vp, PX>MX,                (ModifieeCategory=pronoun)
 Role=Need1, Label=S,   PX<MX,                (ModifieeCategory=pronoun)
 Role=Need2, Label=S,   PX<MX,                (ModifieeCategory=verb)
 Role=Need3, Label=S,   PX=MX,                (ModifieeCategory=verb)

 Dependent Positional Constraints:
 MX[G] < PX = MX[Need3] < MX[Need1] 
 < MX[Need2] MC

}
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Fig. 1. The SuperARV for the word did given the CDG parse for
the sentence what did you learn. Note: G represents the governor
role; the Need1, Need2, and Need3 roles are used to ensure that
the requirements of the word are met. PX and MX represent the
position of a word and its modifiee, respectively.

to encode multiple knowledge sources in a uniform representa-
tion that is much more fine-grained than part-of-speech (POS). A
SuperARV is an abstraction of the joint assignment of dependen-
cies for a word, which provides a mechanism for lexicalizing CDG
parse rules. The gray box of Figure 1 presents an example of a Su-
perARV for the word did, which is derived from the dependency
parse of the sentence What did you learn depicted in the white box
of Figure 1. Each word in the parse has a lexical category, a set of
feature values, and a governor role (denoted G) which is assigned
a role value, comprised of a label, as well as a modifiee, which in-
dicates the position of the word’s governor or head. For example,
the role value assigned to the governor role of did is vp-1, where
its label vp indicates its grammatical function and its modifiee 1 is
the position of its head what. The words in the parse can also have
need roles (denoted Need1, Need2, and Need3), which are used to
ensure the grammatical requirements (e.g., subcategorization) of a
word are met. Note that the verb did needs a subject (Need1) and
a base form verb (Need2), but since the word takes no other com-
plements, the modifiee of the role value assigned to Need3 is set
equal to its own position.

A SuperARV is formally defined as a four-tuple for a word,
〈C, F , (R, L, UC, MC)+, DC〉, where C is the lexical category
of the word, F = {Fname1 = Fvalue1, . . . , Fnamef =
Fvaluef} is a feature vector (Fnamei is the name of a feature
and Fvaluei is its corresponding value), (R, L, UC, MC)+ is a list
of one or more four-tuples, each representing an abstraction of a
role value assignment, where R is a role variable (e.g., governor),
L is a functionality label (e.g., np), UC represents the relative po-
sition relation of a word and its dependent (i.e., modifiee), MC is
the lexical category of the modifiee for this dependency relation,
and DC represents the relative ordering of the positions of a word
and all of its modifiees. Notice that the SuperARV structure for did
provides an explicit way to combine information about its lexical
features with one consistent set of dependency links for the word
that can be directly derived from its parse assignments. A Super-

ARV can be thought of as providing admissibility constraints on
syntactic and lexical environments in which a word may be used.
Once SuperARVs are assigned to a word sequence, a parse for the
sentence can be produced by the constrained operation of deciding
dependencies to link the SuperARVs together.

The model-level integration was accomplished by jointly es-
timating the probabilities of a sequence of words wN

1 and their
SuperARV membership tN

1 :

Pr(wN
1 tN

1 ) =

NY

i=1

Pr(witi|wi−1
1 ti−1

1 )

=
NY

i=1

Pr(ti|wi−1
1 ti−1

1 ) · Pr(wi|wi−1
1 ti

1)

We use this to enable the joint prediction of words and their Super-
ARVs so that word identity information is tightly integrated at the
model level. Note that SuperARVs serve as hidden events for con-
straining word prediction and the SuperARV LM is fundamentally
a class-based LM using SuperARVs as classes. Since a large num-
ber of classes would seriously reduce the quality of a class-based
LM, the number of SuperARVs needs to be controlled. Encourag-
ingly, we found that the number of SuperARVs scales up quite well
as the training set size increases. On our language modeling tasks,
a moderate-sized corpus with 25,168 words produces 328 Super-
ARVs, compared to 791 for the 37M word LM training set of the
WSJ CSR task, 1,612 for the 300M word Hub4 Broadcast News
LM training set, and 622 for the 300+M word CTS LM training
data.

Since the parameter space for the SuperARV LM is larger than
a word-based LM, in [1] we evaluated several smoothing algo-
rithms and how to interpolate with or backoff to lower-order n-
gram probability estimations. For each smoothing algorithm in-
vestigated, we used a combination of heuristics and mutual infor-
mation values to globally determine the lower-order n-grams to
include in the interpolation, as well as their ordering. For a tri-
gram SuperARV LM on the DARPA WSJ CSR task, the modi-
fied Kneser-Ney smoothing algorithm [7] showed the best perfor-
mance. A detailed description of the best order of interpolation
appears in [1].

The SuperARV LM must be trained on a corpus of CDG
parses. However, since there is no CDG treebank (except for the
DARPA Naval Resource Management task), we have developed
a methodology to automatically transform context-free grammar
(CFG) constituent bracketing into CDG annotations [1]. In addi-
tion to generating dependency structures by headword percolation
[3], our transformer utilizes rule-based methods to determine lexi-
cal features and need role values for the words in a parse. Although
these procedures are effective, they cannot guarantee that the CDG
annotations generated are completely correct. In [2], the impact of
errorful training data on the SuperARV LM was investigated on
the Hub4 Broadcast News CSR task. Two state-of-the-art parsers,
Collins’ lexicalized probabilistic CFG parser [8] and Charniak’s
maximum-entropy inspired parser [9], were chosen based on ac-
curacy, robustness, and mutual consistency [2] to generate CFG
parses. The resulting CFG treebank was then transformed to CDG
parses for training the SuperARV LM. We found that the Super-
ARV LM is effective even when trained on inconsistent and er-
rorful training data. Encouraged by these results, we use simi-
lar methods to investigate the performance of the SuperARV LM
within the SRI Hub5 CTS recognition system.
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4. APPLYING SUPERARV LM IN SRI CTS SYSTEM

4.1. SRI CTS baseline LMs and SuperARV LMs

The SRI CTS system, similarly to other multiple-pass speech
recognition systems, employs computationally inexpensive de-
coding steps first to generate intermediate results that constrain
the search space, followed by rescoring with more sophisticated
acoustic and language models. In our original CTS system, a bi-
gram class-conditioned mixture LM [6] is used during the first
pass of acoustic decoding, and a trigram class-conditioned mix-
ture LM is used for lattice expansion. For rescoring N-best hy-
potheses, a 4-gram class-conditioned mixture LM was employed
as well as a standard 400-class class-based LM built from the CTS
sources alone, using classes induced from bigram mutual infor-
mation statistics [10]. The 4-gram class-conditioned mixture LM
was interpolated with the 400-class class-based LM during N-best
rescoring steps, using fixed weights of (0.8, 0.2). For the 2-gram,
3-gram, and 4-gram class-conditioned mixture LMs (all in ARPA
format), separate LMs were built for each data source; all source-
specific LMs, with the exception of the web-topic LM, were then
combined by class-conditioned interpolation [6], and the resulting
mixture LM was interpolated with the topic-related LM using fixed
weighting of (0.8, 0.2). The interpolation of word N-grams was
static and resulted in a single combined backoff N-gram model, as
described in [11]. Note these configurations of bigram, trigram,
and 4-gram LMs were applied in the baseline SRI CTS system.

To train a SuperARV LM, similarly to our procedure on the
Hub-4 Broadcast News CSR task, we parsed the sentences in the
LM training data using Collins’ and Charniak’s parsers to gener-
ate their CFG parse trees and then transformed the trees to CDG
parses. Just as for the 4-gram class-conditioned mixture LM, a sep-
arate SuperARV 4-gram LM was trained for each available source
and the resulting source-specific LMs were then combined into a
single model, with the weights obtained by minimizing the per-
plexity on a held-out development test set.

4.2. SuperARV LM integration into recognition system

To enable efficient integration of the SuperARV LM into the recog-
nition system we generated an ARPA-style backoff LM based on
the SuperARV word probability estimates. Note that the Super-
ARV language model, as a class-based LM, is theoretically able to
estimate probabilities for any word sequence; however, to keep the
generated word LM to a reasonable size, N-gram pruning similar
to [12] is applied. The pruning threshold is tuned on a develop-
ment set to achieve a satisfactory balance between LM size and
perplexity (in future work, we plan to investigate pruning meth-
ods that more directly optimize recognition performance). The
word 4-gram SuperARV LM thus obtained was used in the N-best
rescoring stages of our system. Note this procedure of “dumping”
a SuperARV LM into an ARPA-style backoff LM is for the pur-
pose of efficiently integrating it into the SRI CTS system using the
SRILM toolkit. This efficiency compromise may have reduced the
effectiveness of the SuperARV LM. The ARPA-format SuperARV
4-gram was also interpolated with the 400-class class-based LM
during N-best rescoring steps, using fixed weights of (0.8, 0.2).

As an expedient to leverage the SuperARV LM in the earlier
stages of the recognition system, we used the “LM rescoring” fea-
ture of the SRILM toolkit [11]. We replaced bigram and trigram
probability estimates in the baseline system (for the initial decod-
ing and lattice expansion stages) with SuperARV LM probabil-
ity estimates (backing off as needed for lack of full 4-gram word
contexts). Following this replacement, backoff weights are recom-

Table 1. The perplexity values on the development set from the 4-
gram class-conditioned mixture LM, the SuperARV 4-gram LM,
and their interpolations with the 400-class class-based LM, respec-
tively.

LMs Perplexity

4-gram class-conditioned mixture LM 64.34
The same 4-gram interpolated 62.45
with the 400-class LM
SuperARV 4-gram LM 53.74
SuperARV 4-gram interpolated 53.74
with the 400-class LM

puted to normalize the LMS. We call the updated bigram and tri-
gram models “SuperARV conditioned” LMs.

5. RESULTS AND DISCUSSION
5.1. Perplexity
Table 1 shows the perplexity on the development set for the 4-
gram class-conditioned mixture LM and the SuperARV 4-gram
LM. As can be seen, the SuperARV 4-gram LM achieves a rel-
ative perplexity reduction of 16.5% compared to the 4-gram class-
conditioned mixture LM. However, its interpolation with the 400-
class LM does not yield a further perplexity reduction. This may
be due to the fact that the SuperARV LM, which is itself a class-
based LM, already captures much of the knowledge concerning
similarities among word distributions.

5.2. Recognition error rates
The SRI CTS system includes the following processing stages:

Step 1: Waveform segmentation using a speech/nonspeech
HMM, gender identification, and the estimation of vocal
tract length as well as MFCC and PLP feature computation
and normalization;

Step 2 First-pass N-best decoding (we used N=2000) after phone-
loop MLLR adaptation of MFCC within-word MMIE-
trained triphone models, N-best decoding using a condi-
tioned bigram LM and the adapted models, and N-best
rescoring using the interpolated word and 400-class 4-gram
LMs, phone-in-word duration and pause models [13], and
pronunciation probabilities. The confusion-network based
score combination and hypothesis selection are then per-
formed. The best hypotheses are generated using N-best
ROVER;

Step 3: MLLR adaptation of acoustic models used in Step 2 using
the 1-best hypotheses generated in Step 2, lattice generation
using the adapted model and a conditioned bigram LM, and
lattice expansion using a conditioned trigram LM;

Step 4: N-best decoding from lattices after phone-loop adaptation
of PLP within-word triphone models;

Step 5: N-best decoding from lattices after hypothesis adaptation
of MFCC SAT MLE crossword model;

Step 6: N-best decoding from lattices after hypothesis adaptation
of PLP SAT MLE crossword model;

Step 7: N-best decoding from lattices after hypothesis adaptation
of MFCC non-SAT MMIE-trained non-crossword model;
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Table 2. WER (%) and absolute reductions on the RT-02 tuning
set and test set from the baseline system and the new run using
all updated LMs (i.e., the SuperARV-conditioned bigram and tri-
gram and the SuperARV 4-gram LM). The values in parentheses
for each step are the absolute WER reductions from using the up-
dated LMs over the baseline.

WER (%)(absolute reduction)
Tuning Set Test Set

Step Baseline SARV Baseline SARV

2 31.4 29.9 (-1.5) 32.5 31.4 (-1.1)
4 30.1 29.1 (-1.0) 31.2 30.1 (-1.1)
5 26.4 25.3 (-1.1) 27.9 26.4 (-1.5)
6 26.3 24.9 (-1.4) 27.7 26.1 (-1.6)
7 26.4 25.0 (-1.4) 27.9 26.2 (-1.7)
8 25.9 24.4 (-1.5) 27.5 25.5 (-2.0)
9 25.4 24.4 (-1.0) 26.9 25.4 (-1.5)

10 25.0 23.6 (-1.4) 26.3 24.6 (-1.7)

Step 8: N-best decoding from lattices after hypothesis adaptation
of MFCC SAT MMIE-trained crossword model;

Step 9: N-best decoding from lattices after hypothesis adaptation
of PLP SAT MMIE-trained crossword model;

Step 10: 3-way N-best ROVER combination of the rescored N-
best lists from Steps 7, 8, and 9;

Step 11: Forced alignment on the hypotheses from Step 10 to
generate the word times and estimate confidences.

Note that from Step 4 on, for all steps involving N-best decoding,
N-best rescoring was performed as in Step 2 and the best hypothe-
ses were generated using N-best ROVER [14].

Table 2 compares the word error rates (WERs) for the SRI
DARPA RT-03 Spring CTS system (which used the baseline LMs)
with a modified system that uses the SuperARV LMs. The testset
is the DARPA RT-02 CTS evaluation data. A tuning set of 48
speakers was used to optimize the knowledge source combination
weights for both the old and the new LMs, and the remaining 72
speakers served as an unbiased test set; the table reports the results
on both subsets separately. The evaluation system is otherwise
unmodified.

The use of SuperARV LMs gives a significant reduction in
word error rate between 1.0% and 2.0% absolute, reducing the fi-
nal WER on the complete RT-02 set (i.e., tuning and test sets) by
1.6% (from 25.8% to 24.2%). The improvement on the complete
RT-02 set is 1.3% in Step 2 (from 32.1% to 30.8%), where it is
unaffected by adaptation and cross-adaptation of systems. Note
that later stages benefit from both the improved LM and the bet-
ter quality of adaptation hypotheses in earlier stages. Not shown in
the table is the fact that the SuperARV conditioned bigram, prior to
the first N-best rescoring in Step 2, yielded a 0.7% absolute lower
WER. This is a rather surprising result given the limited context
used for word prediction in that model. If we apply the LMs used
in the baseline system during each pass, and apply the SuperARV
LM only in the last pass to rescore the N-best lists from Steps 7,
8, and 9 and conduct the 3-way N-best ROVER combination, we
achieved only a 0.7% absolute WER reduction. This suggests that
it is important to apply the SuperARV LM as early in decoding as
possible and to continue to use that knowledge during each pass.

We showed how the SuperARV approach to structured lan-
guage modeling, an almost-parsing class-based LM based on Con-
straint Dependency Grammar parses, scales extremely well to
complex, large-vocabulary recognition systems. By converting the
SuperARV LM into the word N-gram ARPA LM format, no addi-
tional computational effort is incurred at recognition time, and the
model can be used in all stages of a multi-pass CSR system, giving
6.2% relative WER reduction on a standard CTS recognition task.

The SuperARV framework was originally developed for read
and planned speech, which tends to exhibit more standard gram-
matical structures. Our model does not yet include any provisions
for dealing with the special features of conversational speech, such
as incomplete sentences and disfluencies, and future work will be
aimed at modeling these features.
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