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ABSTRACT

Statistical language model estimation requires large amounts
of domain-specific text, which is difficult to obtain in many
languages. We propose techniques which exploit domain-
specific text in a resource-rich language to adapt a language
model in a resource-deficient language. A primary advan-
tage of our technique is that in the process of cross-lingual
language model adaptation, we do not rely on the availabil-
ity of any machine translation capability. Instead, we as-
sume that only a modest-sized collection of story-aligned
document-pairs in the two languages is available. We use
ideas from cross-lingual latent semantic analysis to develop
a single low-dimensional representation shared by words
and documents in both languages, which enables us to (i)
find documents in the resource-rich language pertaining to
a specific story in the resource-deficient language, and (ii)
extract statistics from the pertinent documents to adapt a
language model to the story of interest. We demonstrate
significant reductions in perplexity and error rates in a Man-
darin speech recognition task using this technique.

1. INTRODUCTION

Statistical modeling techniques have been remarkably suc-
cessful in many speech and natural language processing ar-
eas. However, the construction of accurate statistical mod-
els requires extensive amounts of training data, and it is
extremely difficult to build statistical models for resource-
deficient languages such as Arabic due to lack of linguis-
tic resources. Not surprisingly, therefore, the performance
of the speech and natural language processing systems on
resource-deficient languages is much worse than the prefor-
mance on resource-rich languages [1].

Methods have been proposed to bootstrap acoustic mod-
els for automatic speech recognition (ASR) in resource defi-
cient languages by reusing acoustic models from resource-
rich languages [2, 3]. Recently, [4] proposed using cross-
lingual information retrieval (CLIR) followed by machine
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translation (MT) to improve a statistical language model
(LM) in a resource-deficient language. In spite of consider-
able success in their experiments, one demand placed by the
approach of [4] is that a sentence-aligned parallel corpus,
which is expensive to obtain, is needed to acquire transla-
tion lexicons. For a resource-deficient language, it is easily
anticipated that little or no sentence-aligned corpus may be
available, and therefore methods which do not require the
sentence-aligned parallel corpus must be developed. One
possible way out is to extract and use cross-lingual lexical
triggers from an easier-to-obtain document-aligned corpus
as proposed in [5].

In this paper, we propose using latent semantic analysis
(LSA) for cross-lingual language modeling, which does not
require a sentence-aligned corpus. LSA of a collection of
bilingual document-aligned texts provides a representation
of words in both languages in a common low-dimensional
Euclidean space [6]. This provides another means for using
a resource-rich language to improve the LM in a resource-
deficient language. We also combine our LSA-based mod-
els with trigger-based models [5], and compare their perfor-
mance with LMs built from a sentence-aligned corpus [4].

Section 2 introduces the basics of cross-lingual story
specific language modeling. Section 3 presents cross-lingual
latent semantic analysis. Section 4 describes the databases
used for our experiments and Section 5 shows the experi-
mental results. Section 6 concludes with future work.

2. CROSS-LINGUAL STORY-SPECIFIC LMS

For the sake of illustration, consider the task of sharpen-
ing a Chinese LM for transcribing Mandarin news stories
by using an extensive corpus of contemporaneous English
newswire text. Of course, any other language pair may serve
the purpose of this exposition, and we use Mandarin only to
be able to simulate varying levels of data sparseness.

Let dC
1 , . . . ,dC

N denote the text of N Chinese test stories
to be transcribed by an ASR system. Since the correct tran-
scriptions dC

i ’s are not available in advance, we use the first
pass ASR outputs as pseudo documents for dC

i ’s. We are
assuming data sparseness in Chinese (for the sake of ex-
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Fig. 1. Data flow diagram for cross-lingual LMs

perimentation) while extensive amounts of English data are
assumed available. Therefore, it stands reason to extract
some useful information from the relevant English docu-
ments1, and use them to improve (sharpen) our Chinese
LMs. Obviously, the first step is a conventional CLIR prob-
lem: we have to identify English documents relevant to a
Chinese test document. Simple vector-based IR with query
translation—based on statistical translation tables—has been
used for these purposes. Let dE

i ’s denote the relevant En-
glish documents retrieved by CLIR for dC

i . Since these are
English documents whereas our target language of interest
is Chinese, they must be translated into Chinese – which is
done in the next step, namely MT. Even with state-of-the-art
MT techniques, however, the quality of translated results is
far from perfect. Yet, topic-specific or story-specific adap-
tation information may be enough for our purpose and it can
be easily obtained by estimating a Chinese unigram statis-
tic based on translation lexicons (cf. [4]). In short, cross-
lingual language modeling is a robust combination of CLIR
and MT techniques. Figure 1 shows the data flow in our
cross-lingual language modeling approach.

3. CROSS-LINGUAL LATENT SEMANTIC
ANALYSIS

LSA is a fully automatic mathematical technique to extract
relations between words and/or documents. The basic idea

1Here, relevant English documents dE
i need not be exact translations of

dC
i ’s; stories about the same topic or event will be adequate.

Fig. 2. Cross-lingual Latent Sematic Analysis

is to reduce the dimensionality of the the co-occurrence data,
for example a word-document matrix in an IR task, into a
smaller but adequate subspace of lower dimension. By ap-
plying singular value decomposition (SVD) which is a form
of factor analysis, it decomposes the input matrix into the
product of three other matrices: one describing the original
row entities (words) as vectors of derived orthogonal factor
values, another describing the original column entities (doc-
uments) in the same way, and the third a diagonal matrix
containing singular values such that when the three com-
ponents are multiplied, the original matrix is reconstructed.
The diagonal entries in the third matrix are sorted by the
singular values, and by ignoring entries with small singular
values, we can approximate the original input matrix. For a
detailed exposition of LSA, see [7].

3.1. Latent Semantic Analysis for CLIR

The first use of LSA in Figure 1 is for CLIR. A bilingual col-
lection of story-aligned documents, say in Chinese and En-
glish, is assumed to be given. From the document-aligned
corpus, we construct a bilingual word-document matrix W
by concatenating aligned document-pairs to create bilingual
documents. Each column in the matrix W corresponds to
a document-pair, while each row corresponds to either an
English or a Chinese word. The bilingual word-document
matrix is then decomposed by SVD, and we obtain three
matrices, U , S and VT , as shown in Figure 2.

Next, suppose we have an additional monolingual col-
lection, say, of English documents with its word-document
matrixW . Since it is an English-only collection, all the rows
corresponding to the Chinese words (shown in the lower
half in Figure 3) have 0 entries. Nevertheless, we project
columns of W into the LSA space of the bilingual collection
described above by constructing a representation V

T
for the

English-only documents as2

V
T

= S−1 ×UT ×W . (1)

Finally, given a Chinese query (document), we again
construct a bilingual document-vector, this time with 0 in
all English word-positions, and project it to the LSA space
in a manner similar to (1). Since the projected vector has the

2Note that matrix U is column orthogonal, which implies UT ×U = I.

I - 258

➡ ➡



Fig. 3. Folding-in a monolingual corpus into LSA

same dimension as columns of V
T
, we compare a Chinese

query with an English document by simply measuring the
cosine similarity (dot-product) of their vectors. See [6] for
details.

3.2. Latent Semantic Analysis for MT

We have shown how LSA can be used for CLIR; this is
accomplished by first projecting each query and document
into the low dimensional space, then measuring similarities
in the projected space. A similar idea is used to compute
similarity between an English and a Chinese word. Each
word in either vocabulary, represented as a row in W , may
also be represented by the corresponding row of U . Again,
since all the words are in the same dimension, we can com-
pare words regardless of which language they belong to.
Remember that we are not interested in exact translations;
all we need is a probability, PLSA(c|e), that a Chinese word
c occurs in a document given an English word e is in its
aligned counterpart. For each English word e, we first se-
lect similar Chinese words based on cosine similarity, and
then estimate the translation probability as

PLSA(c|e) =
Sim(c,e)γ

∑c′∈C Sim(c,e)γ (2)

where γ � 1 as suggested in [8]. Having estimated (2), we
build our LSA-based LM analogous to [4].

PLSA−unigram(c|dE
i ) = ∑

e∈E

PLSA(c|e)P̂(e|dE
i ) (3)

PLSA−interpolated(ck|ck−1,ck−2,d
E
i ) = (4)

λPLSA−unigram(ck|d
E
i )+(1−λ)P(ck|ck−1,ck−2).

4. LM TRAINING AND ASR TEST CORPORA

We have chosen the experimental ASR setup created in the
2000 Johns Hopkins Summer Workshop to study Mandarin
pronunciation modeling[9]. The approximately 10 hours of
acoustic training data for their ASR system was obtained
from the 1997 Mandarin Broadcast News distribution, and
context-dependent state-clustered models were estimated us-
ing initials and finals, not phone(me)s, as subword units.

We use the Hong Kong News (HKNews) text corpus as
our parallel text for the training stochastic translation lexi-
cons using the GIZA++ toolkit, and for the SVD decompo-
sition of Figure 2.

Two Chinese text corpora and an English corpus are
used to estimate LMs in our experiments. A vocabulary C

of 51K Chinese words, used in the ASR system, is also used
to segment the Chinese training text into words. This vocab-
ulary gives an OOV rate of 5% on the test data, described
below.

XINHUA: We use the Xinhua News corpus of about 13
million words to represent the scenario when the amount
of available LM training text borders on adequate, and esti-
mate a baseline trigram LM for one set of experiments.

HUB-4NE: We also estimate a trigram model from only
the 96K words in the transcriptions used for training acous-
tic models in our ASR system. This corpus represents the
scenario when little or no additional text is available to train
LMs.

NAB-TDT: English text contemporaneous with the test
data is often easily available. For our test set, we select
(from the North American News Text corpus) articles pub-
lished in 1997 in The Los Angeles Times and The Wash-
ington Post, and articles from 1998 in the New York Times
and the Associated Press news service (from TDT-2 corpus).
This amounts to a collection of roughly 45,000 articles con-
taining about 30-million words of English text.

Our test set, a subset [9] of the NIST 1997 and 1998
HUB-4NE benchmark tests, contains Mandarin news broad-
casts from three sources for a total of about 9800 words.
We generate two sets of lattices using the baseline acous-
tic models and bigram LMs estimated from XINHUA and
HUB-4NE. All LMs are evaluated by rescoring 300-best
lists extracted from these two sets of lattices. We report both
word error rates (WER) and character error rates (CER), the
latter being independent of any difference in segmentation
of the ASR output and reference transcriptions.

5. EXPERIMENTAL RESULTS

We perform the SVD of Figure 2 using document-pairs from
the HKNews corpus, and retain about R = 700 singular val-
ues in S and the corresponding singular vectors U and V .
This provides the basis for the word-to-word similarity com-
putation of (2). We project the NAB-TDT corpus on to this
space via (1), and use the resulting representations V for the
English documents. This provides the basis for the CLIR
step used to match a Mandarin story being transcribed by
the ASR system with English documents in NAB-TDT.

We begin by rescoring the 300-best lists from the bigram
lattices with trigram models. The results for the XINHUA
and the HUB-4NE corpora are reported in Table 1. For each
test story dC

i , we then perform CLIR using the first pass
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Language Model Perp WER CER p-value

XINHUA Trigram 426 49.9% 28.8% –
LSA-interpolated 364 49.3% 28.9% 0.043
Trig+LSA-intpl 351 49.0% 28.7% 0.002
CL-interpolated 346 48.8% 28.4% < 0.001

HUB4-NE Trigram 1195 60.1% 44.1% –
LSA-interpolated 695 58.6% 43.1% <0.001
Trig+LSA-intpl 686 58.7% 43.2% <0.001
CL-interpolated 630 58.8% 43.1% < 0.001

Table 1. Word-Perplexity and ASR WER comparisons

ASR output to choose the most similar English documents
dE

i ’s from NAB-TDT. Then we create the cross-lingual un-
igram of (3). We next find the interpolation weight λ in
(4) that maximizes the likelihood of the 1-best hypotheses
of all test utterances in a story obtained from the first ASR
pass. We finally rescore the 300-best lists using the LSA-
interpolated LM, and report results3 in Table 1.

For comparison, we also report the CL-interpolated re-
sults of [4] which use a superior translation lexicon derived
from a sentence-aligned corpus, both for CLIR to find dE

i
and instead of PLSA(c|e) in (3). Finally, we note that the
technique of cross-lingual lexical triggers reported in [5]
also assumes only a document-aligned corpus as done here,
and an interpolation of their model with ours does not re-
quire any additional resources. We perform this interpola-
tion and report the results as Trig+LSA-intpl in Table 1.

As Table 1 shows, the LSA-interpolated model shows
significant reduction in both perplexity (15-42%) and WER
(0.6-1.5% absolute) over the baseline trigram model both
when a moderate amount of LM training text is available
(XINHUA) and when it is really scarce (HUB4-NE). It also
performs only slightly worse than the CL-interpolated model
of [4], which requires the more expensive sentence-aligned
corpus. Finally, the interpolation of our LSA-based model
and the trigger-based model of [5] brings further gains, re-
moving the remaining gap from the CL-interpolated model:
the p-values of the differences between CL-interpolated and
Trig+LSA-intpl models are 0.58 for XINHUA and 0.79 for
HUB4-NE. Since a large document-aligned corpus is much
easier to obtain than a large sentence-aligned one, our tech-
nique has the potential for further gains from larger bilin-
gual training sets.

6. CONCLUSIONS

We have demonstrated cross-lingual language modeling tech-
niques that require the bilingual corpus only to be document-
aligned, which is a realistic reflection of the situation in a
resource-deficient language. Effectively, we have proposed

3All p-values are based on the standard NIST MAPSSWE test, indicat-
ing statistical significance of WER improvement over the trigram baseline.

methods to build cross-lingual language models which do
not require machine translation. By using latent semantic
analysis of a document-aligned corpus, we we have demon-
strated a significant reduction in perplexity (18-42%) and
WER (0.9-1.4%) over a trigram model. Performance statis-
tically indistinguishable from a previously published method
predicated on good MT capabilities can be achieved by our
methods.

We are developing ways to extend the LSA-based model
beyond the cross-lingual unigram statistics (2) to higher or-
der N-grams.
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