
VOCABULARY-INDEPENDENT SEARCH IN SPONTANEOUS SPEECH

Frank Seide, Peng Yu, Chengyuan Ma, and Eric Chang

Microsoft Research Asia, 5F Beijing Sigma Center, No. 49 Zhichun Rd., 100080 Beijing, P.R.C.
{fseide,t-rogery,i-chenma,echang}@microsoft.com

ABSTRACT

For efficient organization of speech recordings – meetings, inter-
views, voice mails, lectures – the ability to search for spoken key-
words is an essential capability. Today, most spoken-document
retrieval systems use large-vocabulary recognition. For the above
scenarios, such systems suffer from both the unpredictable vocab-
ulary/domain and generally high word-error rates (WER).

In this paper, we present a vocabulary-independent system to in-
dex and rapidly search spontaneous speech. A speech recognizer
generates lattices of phonetic word fragments, against which key-
words are matched phonetically.

We will first show the need to use recognition alternatives (lat-
tices) in a high-WER context, on a word-based baseline. Then we
will introduce our new method of phonetic word-fragment lattice
generation, which uses longer-span language knowledge than a
phoneme recognizer. Last we will introduce heuristics to compact
the lattices to feasible sizes that can be searched efficiently.

On the LDC Voicemail corpus, we show that vocabulary/domain-
independent phonetic search is as accurate as a vocabulary/do-
main-dependent word-lattice based baseline system for in-
vocabulary keywords (FOMs of 74-75%), but nearly maintains this
accuracy also for OOV keywords.

1. INTRODUCTION

Several approaches are reported in literature for the problem of
searching for spoken words in audio recordings.

The TREC (Text REtrieval Conference) Spoken-Document Re-
trieval (SDR) track has fostered research on audio-retrieval of
broadcast news clips. Most TREC benchmarking systems use
broadcast news recognizers to generate approximate transcripts,
and apply text-based information retrieval-techniques to these.
They achieve retrieval accuracy similar to using human reference
transcripts, and ad-hoc retrieval for broadcast news is considered
a “solved problem” [1]. Noteworthy are the rather low word-error
rates (20%), and that recognition errors did not lead to catastrophic
failures due to redundancy of news segments and queries.

However, this approach does not address the problem of queries
which are not in the recognizer’s vocabulary. [2] reports that for
the SpeechBot system, which indexes audio from public web sites,
out-of-vocabulary (OOV) rates on the data are very low, but for
the queries an OOV rate of 12% is observed. In [3] the same au-
thors address the problem by indexing phonetic or phonetic word-
fragment based transcriptions. For OOV queries, retrieval accu-
racy remains comparably low. Similar approaches, e.g. using over-
lapping M -grams of phonemes, are discussed in [4] and [5].

Vocabulary-independent indexing requires phoneme or word-
fragment speech recognition. Due to low recognition accuracies,

recognition alternatives must be considered in the search. [6] in-
troduces the approach of searching phoneme lattices. [7] proposes
a similar idea called “phonetic search track.” Search is approached
as a problem of word-spotting.

The system presented in this paper adopts the phoneme-lattice
based word-spotting approach of [6]: “Indexing” consists of
speech recognition to generate a phonetic representation of each
audio file – a “lattice” of scored phoneme hypotheses – which
can then be “searched” rapidly to locate keywords by its phonetic
representation. Our system differs from [6] in that we use word-
fragment based phoneme-lattice generation to make better use of
prior language knowledge; a number of heuristics to improve lat-
tice quality while reducing the data size and obliviating the need
for confusion models; and the use of grammars to denote the query.
To our knowledge, this is the first study that compares phonetic and
word-lattice based search on a publicly available data set.

This paper is organized as follows. Section 2 describes the con-
cept of lattice-based word spotting. Section 3 introduces our word-
fragment approach to lattice generation. In section 4, we discuss
efficient lattice-based search. Section 5 introduces our approaches
to lattice compaction, and Section 6 the use of grammars. Sections
7 and 8 present the experimental setup and results.

2. LATTICE-BASED WORD SPOTTING

The result of a search operation is a list of hypotheses
(W, ts, te, P (W ts te|O)) that match the query string W in the
time range ts to te. The posterior probability P (W ts te|O) serves
as a measure for the goodness of match. In our phonetic approach,
W is represented by its phoneme sequence (homophones become
indistinguishable). O shall denote the acoustic observation ex-
pressed as a sequence of feature vectors ot.

The posterior P (W ts te|O) is the sum of the probabilities of all
paths that contain the query string W from ts to te:

P (W ts te|O) =

∑

W−,W+

p(O tste|W−WW+)P (W−WW+)

∑

W ′
p(O|W ′)P (W ′)

with W− and W+ denoting any word sequence before ts and after
te, respectively; W ′ being any word sequence; and1

p(O tste|W−WW+)=p(o0..ts |W−)p(ots..te |W )p(ote..T |W+)

P (W ts te|O) is efficiently approximated by forward-backward
scoring of the word lattice. In a real implementation, acoustic sco-
res must also be scaled by the inverse language-model weight [8].

1For crossword-triphone based recognizers, all terms becomes context
dependent, and the above formulation needs to be extended accordingly.
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3. PHONETIC WORD-FRAGMENT LATTICES

For vocabulary-independent phonetic search, the lattice does not
contain words of a fixed vocabulary, but phonemes or phoneme
sequences. Ideally, all valid phoneme sequences of the lan-
guage should be allowed in the lattice (scored with an appropriate
language-model probability), and invalid sequences excluded.

The simplest approach is to generate lattices using a phoneme dic-
tionary and language model. However, longer units, such as syl-
lables, are desirable to provide for better suppression of invalid
phoneme sequences, more effective lattice pruning, and more ac-
curate time boundaries from our speech recognizer, which uses the
common word-pair approximation for lattice generation [9, 10].

We decided against the English syllables as units since we feared
that due to their very large number (over 10,000), a syllable lan-
guage model might not distinguish robustly between invalid and
unseen phoneme sequences. Instead, like [3] we use an automatic
method to generate a smaller set of units – phonetic word frag-
ments – that is approximately optimal w.r.t. training-set perplexity.

3.1. Automatic Word-Fragment Selection
Klakow’s iterative corpus mapping algorithm [11] based on
mutual-information seemed the most suitable approach. With the
mutual information of two units v and w defined as

MI(v, w) = log(
P (v, w)

P (v) · P (w)
) · P (v, w)

= log(Ntok · Nv,w

Nv · Nw
) · Nv,w

Ntok

an iteration will begin by determining all pairs (v, w) with MI
above a threshold. Ambiguity from potentially overlapping pairs
is resolved by eliminating a pair from the list if one or both con-
stituents are part of a pair with higher MI. Pairs spanning word
boundaries are also excluded. The remaining pairs v w are re-
placed in the training corpus by single units v-w. The process is
repeated until the desired number of fragments has been obtained.

Examples of fragments generated this way are /-k-ih-ng/ (the sylla-
ble -king), /ih-n-t-ax-r-/ (inter-), and /ih-z/ (the word is). One of the
longest fragments turned out to be /ae-k-ch-uw-ax-l-iy/ (the word
actually). The resulting mapped corpus also included a residual
number of occurences of each individual phoneme.

3.2. Phoneme-Level Time Boundaries and Scores
An accurate time boundary should be determined for a keyword
even if the keyword boundary falls into the middle of a multi-
phone fragment. The speech recognizer’s output needs to include
time boundaries and scores of each individual phoneme.

Assuming a bigram fragment-language model, existing bigram de-
coders can be configured to implement this by replacing each frag-
ment by a sequence of fragment-dependent phonemes, and con-
verting the fragment bigram model into a special “equivalent” bi-
gram model of fragment-dependent phonemes. Such an equiva-
lent model cannot be guaranteed to be normalized locally, nor to
provide accurate language-model probabilities for each individual
phoneme. On the whole-sentence level, however, exact and nor-
malized probabilities are possible.

4. EFFICIENT LATTICE SEARCH

In phonetic search, inverse-indexing techniques common in text-
based information retrieval systems are infeasible due to the large
amount of alternative recognition results. Nearly every lattice
would match every query, even when using longer units such as

phone-triplets. Full search of all lattices is unavoidable, and the
time for searching one lattice a critical factor. Our search consists
of two steps:

1. identify all lattice sub-paths that match the query string and
compute their posterior probability;

2. merge matches with identical or nearly identical time
boundaries.

The solution to step 1 is symmetric dynamic programming [6],
which we implement by token passing. Each lattice node has an
associated token stack. For each node n, beginning with the lattice
start node, we (1) start a new hypothesis by inserting a new to-
ken into the nodes’ stack (initialized with the node’s time ts = tn

and the forward probability2 αn =
∑

W p(o0..tnW ) and (2) try
to expand all hypotheses in the token stack with their respective
next phoneme in the query string by searching for matching out-
going edges. For expanded hypotheses, a new token is inserted
into the edge’s target node’s token stack after accumulating the
edge’s acoustic and language model score. If the end of the query
string is reached, the backward score at the end node is added, and
the result is inserted into the result list.

A dramatic speed-up is achieved by integrating step 2: Tokens are
only inserted into a token stack if this stack does not already con-
tain a token that corresponds to the same phoneme position in the
query string. If such a token is found (possible due to a differ-
ent crossword context or different start time at the word begin-
ning), both tokens are instead merged, their partial path proba-
bilities added up. If the two tokens’ start times differ, the more
probable start time will propagate.

5. HEURISTICS FOR LATTICE COMPACTION

The resulting fragment-based phoneme lattices are infeasibly huge
(av. 250 hypotheses/cs; requiring several 100 MB/h), mostly due
to the expansion of triphone contexts. Yet they suffer from low
hit rates, because often, triphone hypotheses to match a keyword
are present but located on disconnected sub-paths of different frag-
ments hypotheses, although they could form an acoustically valid
path. To increase hit rates we apply the following post-processing:

1. Convert the lattice into a true triphone lattice to allow cross-
over between fragments. Maintaining the triphone-context con-
ditions keeps acoustic path scores accurate. However, fragment-
based language-model scores become invalid and need to be re-
placed by a phoneme-level M -gram model.

2. Add penalized back-off paths to allow transitions between
phoneme hypotheses with mismatching triphone context. Path
scores may now consist of slightly inconsistent hypotheses.

Second, to bring memory requirements into a feasible range:

3. Eliminate all triphone-context constraints and merge triphone
hypotheses to form a monophone lattice. “Estimate” the emission
probabilities for the resulting monophone hypotheses by the very
crude but effective heuristics of linearly combining the triphones’
probabilities weighted by their posterior probability.

4. Time collapsing. Three frames are collapsed onto a single
node. Scores for hypotheses whose length changes are renormal-
ized (another crude heuristics).

The crude manipulations of the last two steps trade increased hit
rates for distorted acoustic scores. As we will show below, this has
different effect for long and short keywords.

2Again we ignore triphone context here for simplicity of presentation.
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6. USING A GRAMMAR

We extended the lattice-search algorithm described in section 4 to
accept the query-string in the form of a weighted finite-state net-
work representing a grammar. This opens interesting possibilities.

1. Alternative pronunciations of a keyword can be searched for
simultaneously. The probabilities for all variants will automati-
cally be summed up, and it is easy to include prior probabilities
for pronunciation variants.

2. For batch evaluations such as ours where sets of over 2000
different keywords need to be searched for, a huge speed-up can
be achieved by folding the keyword list into a prefix tree.

3. The network allows generalized searches for complex expres-
sions like telephone numbers or date expressions.

In this paper, we use the first two.

7. EXPERIMENTAL SETUP

7.1. Test database

We evaluate our system on the LDC Voicemail Corpus [12], which
consists of two parts, VM-I and VM-II. The acoustic model was
trained on 309 hours of the Switchboard corpus, and mixture
means were MAP-adapted using the 15h training portion of VM-I.

The evaluation set is vmtest as defined in [13], consisting of
the original test sets of VM-I and VM-II, plus additional material
from VM-II training (we did not use VM-II for any training) – a
total of 243 voice messages, 94 minutes of data. During algorithm
development and for all parameter tuning, we used a separate de-
velopment set consisting of 250 different VM-II messages.

To be truly vocabulary and domain independent, we did not use
voicemail data for phonetic search w.r.t. vocabulary, language
model, or word-fragment generation. Instead, we used phonetic
transcriptions of the 309 hours of Switchboard, of 50 hours of
LDC Broadcast News 96 training, and from 87,000 background-
dictionary entries, total 11.8 million phoneme tokens.

For our word-based baselines only, we trained a language model
on the VM-I training transcriptions3 (about 160,000 words). The
recognition lexicon is the training-set vocabulary of 7469 words.

7.2. Keyword selection

The keyword set to be used in our experiments was selected by an
automatic procedure from the transcription of the test files.

We first picked all words and word sequences up to 4 words that
appear in at most two different voice messages (document fre-
quency ≤ 2), assuming they represent the most informative words
to describe a document. This list was further filtered according to
criteria similar to [7]. Stopwords4 were excluded, as were num-
bers, genitives, spelled letters, words with 3 letters or less, and
words (or sequences) that are substrings of other words (or of se-
quences of the same number of words). Stopwords occuring in at
most 30 documents were allowed to be part of word sequences.

The resulting keyword set has 2049 entries, 620 of which (30.3%)
are OOV5 w.r.t. our word-based baseline. Example keywords are
pentium, federal-express package, and internet-workstation ad-
dress request.

3Interpolation with a Switchboard language model did not lead to im-
provements.

4The stoplist was a slightly extended version of the commonly used
stoplist of the SMART information-retrieval system.

5A word sequence is out of vocabulary if at least one of its words is.

Table 1. Test-set perplexities (PP) for phoneme, fragment, and
word language model.

phoneme fragment word
trigram bigram trigram

(SWBD+) (SWBD+) (VM-I)

token PP 83 351 116
phoneme PP 83 43 4.7

7.3. Phoneme-lattice generation

A fragment vocabulary of 500 fragments (plus the original entire
phoneme list) was created with the word-fragment generation pro-
cedure described in section 3. The 11.8 million phoneme tokens
in the language-model training corpus were mapped to 6.2 million
fragments, from which a bigram language model was trained.

Table 1 compares the development test-set perplexity of the
fragment-based model with a phoneme trigram and the baseline
word-level trigram model. We need to mention here that in our
system, phonemes carry a word-position marker (word beginning,
middle, end, or single-phone word), increasing the phoneme in-
ventory to 166 units. Also note that the word trigram were trained
on voice messages (“VM-I”), while phoneme and fragment models
was trained on non-voicemail data (denoted as “SWBD+”).

For phoneme-lattice generation, we used the HTK tool HVite,
a general Viterbi decoder that can be configured to perform all
sorts of decoding tasks by specifying the corresponding recogni-
tion network. It has direct support for crossword triphones and
lattice generation, but no large-vocabulary recognition techniques
such as M -gram language models or the use of a prefix tree.

We configured HVite with a static phoneme network repre-
senting the vocabulary as a prefix-tree structure that has been
fully expanded w.r.t. language-model context (utilizing the lan-
guage model’s back-off nature) and contains fully factored bigram-
language model scores (aka language-model lookahead). Because
HVite considers every arc in the network a “word,” the generated
lattices contain the full phoneme-level segmentation and scoring
while fully utilizing the longer language context provided by the
word-fragment model.

8. RESULTS

We measure word-spotting accuracy by the common “Figure of
Merit” (FOM) defined by NIST (National Institute of Standards &
Technology) as the average of the detection/false-alarm curve over
the range [0..10] false alarms per hour per keyword.

8.1. Word-based search (baseline) and top-1 vs. lattice search

First we present results from our word-level baseline system (Table
2). OOV keywords can of course not be found in the word-based
output, so we excluded them here.

With the top-1 word-error rate (WER) of 40.2%, word-spotting on
the top-1 path achieves a hit rate of 47.4%. The hit rate is an upper
bound for the figure of merit (FOM) and is in turn bounded by the
top-1 “correct rate”6 which is 67.2% for our system.

Word-spotting on lattices yields a dramatic 60% relative improve-
ment of FOM, to 75.2%. This is an important outcome to keep
in mind when considering literature that benchmarks phoneme-
lattice based search against top-1 word-based search without re-
porting word-lattice based results (e.g. [7]).

6correct rate = 100% - (WER - insertion rate)
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Table 2. Word-spotting results using the top-1 path vs. using word
lattices (word-level baseline, in-vocabulary keywords only).

top-1 path lattice

WER 40.2% -
FOM ≤47.4% 75.2%

Table 3. Word-spotting results for phonetic search vs. word-based
search (lattice).

FOM
keyword set phonetic word-based

in-vocabulary only 73.9% 75.2%
out-of-vocabulary only 70.1% 0
in- and out-of-vocabulary 72.8% 54.2%

8.2. Phonetic search and out-of-vocabulary keywords

Table 3 compares phonetic search and word-based search. For
in-vocabulary keywords (w.r.t. the baseline vocabulary), phonetic
search (FOM 73.9%) nearly reaches word-based search7 (75.2%,
a relative gap of <2%). Moreover, for phonetic search, the differ-
ence between in- and out-of-vocabulary keywords is small (relative
gap of about 5%).

The overall FOM of phonetic search (72.8%) – including OOV
keywords – is 34% higher that that of word-based search (54.2%).8

8.3. Effect of lattice-compaction heuristics

Table 4 shows the effect of the various lattice-compaction heuris-
tics introduced in section 5. FOMs are given for the whole key-
word set and separately for long keywords (7 phones or longer)
and short keywords (2-6 phones). The table also shows average
lattice sizes in edges/centisecond.

Heuristics 1. – conversion into true triphone lattice – leads to a
significant FOM improvement (from 36.5% to 49.4%), caused by
a similar increase of hit rate. The loss of long-span LM context
has no visible impact. Heuristics 2 – the addition of penalized
back-off paths – brings a huge FOM improvement to 70.9%, again
caused by a similarly large hit-rate increase. The mild inaccuracies
of acoustic scores do not have visible impact.

Heuristics 3. is the elimination of triphone contexts and crude ap-
proximation of monophone emission probabilities. Here, the ac-
tual hit rates are instructive as well. For long words, the FOM now
increases to 82%, at a hit rate of 90%. For short words, the FOM
drops to 59.9% – at a hit rate of 94%. For Heuristics 4. – time
quantization – this trend continues, but we now also see a small
drop for the long words (at yet minimally increased hit rate).

Clearly, for long keywords, confusability is low, and hit rate is
the limiting factor – the more phones in a keyword, the higher the
chance that at least one of them has been pruned from the lattice.
Short words on the other hand are highly confusable, so with hit
rates approaching 100%, acoustic score is the dominating factor.

Luckily, long words occur less frequent, thus are more descriptive
and more useful as keywords (our test set actually contains 40%
more long keywords than short keywords). With all four heuristics
applied, the resulting database of lattices becomes small enough to
be searched within seconds.

7Please also note that the word-based baseline system’s language model
is biased towards voice messages, while the phoneme-based one is not.

8Of course, the actual OOV rate is the key factor here. Had we used a
larger dictionary of, say 100,000 words, the gap might be smaller.

Table 4. Word-spotting results for different lattice-compaction
heuristics, for all, long, and short keywords.

compaction FOM size
heuristics all kw long kw short kw [edges/cs]

baseline 36.5% 29.0% 47.0% 140
1. triphone 49.4% 44.4% 56.4% 122
2. back-off paths 70.9% 76.2% 63.3% 250
3. monophone 72.8% 82.0% 59.9% 30
4. time quant. 70.2% 81.3% 54.6% 10

9. CONCLUSION

We have presented a vocabulary-independent system to index and
rapidly search spontaneous speech.

We have shown a substantial improvement from using lat-
tices (unlike most SDR systems); presented a novel phonetic
word-fragment based lattice-generation approach; and introduced
heuristics for lattice compaction necessary to reduce storage size
and to allow efficient search.

We found that vocabulary/domain-independent phonetic search is
as accurate as a vocabulary/domain-dependent word-lattice based
baseline system for in-vocabulary keywords, and nearly maintains
this accuracy also for OOV keywords.
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