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ABSTRACT

This paper describes the development of the 2003 CU-HTK
large vocabulary speech recognition system for Conversational Tele-
phone Speech (CTS). The system was designed based on a multi-
pass, multi-branch structure where the output of all branches is
combined using system combination. A number of advanced mod-
elling techniques such as Speaker Adaptive Training, Heteroscedas-
tic Linear Discriminant Analysis, Minimum Phone Error estima-
tion and specially constructed Single Pronunciation dictionaries
were employed. The effectiveness of each of these techniques
and their potential contribution to the result of system combina-
tion was evaluated in the framework of a state-of-the-art LVCSR
system with sophisticated adaptation. The final 2003 CU-HTK
CTS system constructed from some of these models is described
and its performance on the DARPA/NIST 2003 Rich Transcription
(RT-03) evaluation test set is discussed.

1. INTRODUCTION

Despite many years of research the transcription of Conversational
Telephone Speech (CTS) remains one of the most challenging au-
tomatic speech recognition tasks. As a result of the difficulty of the
problem and the intense research effort, highly complex recogni-
tion systems have been constructed and are evaluated in the annual
U.S. government sponsored evaluations

In this paper a number of acoustic modelling techniques such
as Speaker Adaptive Training (SAT), Heteroscedastic Linear Dis-
criminant Analysis (HLDA), Minimum Phone Error (MPE) esti-
mation and specially constructed Single Pronunciation dictionar-
ies (SPron) are investigated in the framework of a state-of-the-art
multi-pass CTS transcription system with sophisticated adaptation,
large-scale language models and confusion network based system
combination.

The rest of the paper is organised as follows. Section 2 gives
an overview of the CTS task, properties of the training data and the
basic features of the CU-HTK system. In Section 3 the theory of
system combination is described. Section 4 describes the overall
structure of the multi-branch CU-HTK CTS system and discusses
the role of system combination. The next two sections present
results regarding the performance of the advanced modelling tech-
nique used (SAT, HLDA, SPron) and their effect on the output
of the system combination, respectively. Finally the performance
of the complete 2003 CU-HTK system in the RT-03 evaluation is
analysed.

2. BASIC SYSTEM FEATURES

The CTS data consists of phone conversations between by vol-
unteers on an assigned topic in (American) English. The data
available for training the acoustic models consists of 296 hours
of speech released by the LDC (Switchboard I, Call Home English
and Switchboard Cellular) plus 67 hours of Switchboard (Cellular
and Switchboard II phase 2). For the LDC data detailed, careful
transcriptions were provided by MSState University. For the ad-
ditional 67 hours BBN made “quick transcriptions” available that
were produced by a commercial transcription service.

A word-based 4-gram language model was trained on the acous-
tic transcriptions, additional Broadcast News data (427M words of
text) plus 62M words of “conversational texts” collected from the
World Wide Web [1]. The word-based 4-gram was smoothed with
a class-based trigram trained only on the CTS transcriptions. The
recognition dictionary contained 58,231 words with an average of
1.1 pronunciations per word.

The evaluation test set used in the 2003 DARPA/NIST Rich
Transcription evaluation (eval03) contains data from the LDC Fisher
collection1 and from Switchboard II phase 5. The set comprises 72
phone calls of 5 minutes each for a total of about 6 hours chosen to
balance gender. It contains a mix of landline and cellular calls. An
additional DARPA/NIST internal “progress” set is used to asses
progress over the years in the DARPA EARS project. For system
development the 2002 evaluation data set (eval02) was used.

The audio data is parameterised using 13 PLP features aug-
mented with their first and second order derivatives. Vocal Tract
Length Normalisation (VTLN) was used in training and test by
warping the filterbank. Cepstral mean and variance normalisation
was applied. All acoustic models were built using discriminative
training based on the Minimum Phone Error (MPE) criterion [2].

A detailed description of all system components is provided
in [3]. A review of previous work on CU-HTK Conversational
Telephone Speech can be found in [4].

3. SYSTEM COMBINATION IN LVCSR SYSTEMS

Most CTS LVCSR systems that are optimised for accuracy (rather
than runtime speed) rely on system combination to achieve state-
of-the-art performance. For example, all systems entered in the
RT-03 CTS evaluation employed system combination.

System combination for ASR was introduced in [5] with the
ROVER tool developed to combine the word-level output gener-
ated by independent LVCSR systems. Significant gains in accu-

1http://www.ldc.upenn.edu/Fisher/
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racy were achieved by combining the outputs of different partic-
ipants in the evaluations. Starting with [6] participants employed
hypothesis combination inside their systems.

ROVER operates by aligning the word sequences generated by
the different systems based on a Levenshtein distance metric. The
resulting word graph consists of a series for arc sets where each
arc in a set represents a hypothesis from one of the systems (either
a word or “-” representing a deletion). One of the words is selected
either using simple voting or based on confidence scores assigned
to the words by the different systems.

An extension of the basic ROVER approach is Confusion Net-
work Combination (CNC) [8] which uses Confusion Networks [7]
instead of 1-best hypotheses as input for the combination process.
Each confusion set (or “sausage”) contains the most likely com-
peting word hypotheses from one system with associated poste-
rior probabilities. Instead of aligning sequences of words as in
ROVER, in CNC sequences of confusion sets are aligned. Based
on the alignment the decision makes use of the full posterior dis-
tributions by summing the posteriors generated by the systems.

To maximise the effectiveness of system combination the sys-
tems to be combined should ideally have similar, low error rates
but exhibit significantly different error patterns. Empirical evi-
dence shows that the most effective way to produce such com-
plementary systems is to built the models totally independently
in separate research groups using different software and different
training procedures. This has been demonstrated by NIST in post-
evaluation experiments [5] where substantial improvements were
achieved by combining the submissions from all the participants.
Alas, this is not really feasible for normal systems.

4. HIGH-LEVEL SYSTEM STRUCTURE

The CU-HTK CTS systems consists of two main stages: lattice
generation with adapted models and lattice rescoring in multiple
branches. The aim of the lattice generation is twofold. Firstly, it
provides large high-quality lattices that restrict the search space in
the subsequent rescoring stage. Secondly, it provides supervision
information for 1-best and lattice-based adaptation in each of the
branches of the rescoring stage.

Resegmentation

P1

Segmentation

P3

P2

VTLN

CMN / CVN

MPE triphones, 58k, fgint03

LatMLLR, 1 speech transform

MPE triphones, HLDA

MPE triphones, HLDA, 58k, fgint03

58k, PProb, fgintcat03

fgintcat03 Lattices

Fig. 1. Structure of the lattice generation stage

The audio data is segmented using a GMM-based procedure
[9]. The actual lattice generation is performed with three full de-
coding passes. The first pass (P1) generates a transcription (using
MPE HLDA trained triphones and the word 4-gram LM). This ini-
tial transcription is used to choose a VTLN warp factor for each
conversation side. The second pass (P2) uses MPE VTLN HLDA
triphones with the same LM to create small lattices for use in lat-
tice MLLR [10] in the next pass. P3 uses the same models as P2
adapted using lattice MLLR (1 transform each for speech and si-
lence). Large word lattices are generated with the word 4-gram
LM interpolated with the class trigram.
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Fig. 2. Generic structure of lattice rescoring stage

The aim of the lattice rescoring stage is to generate hypothe-
ses using a number of different acoustic models. For a schematic
view of this stage see Figure 2. It consists of a number of branches
each split into a triphone and a quinphone part. Each branch cor-
responds to a particular model building technique (e.g. SAT). All
models are cross-word context-dependent (±1 phone for the tri-
phones, ±2 for the quinphones) and the triphones are position-
independent while the quinphones use word-boundary position in-
formation in the decision-tree state clustering. In each branch
the triphones are adapted using a full-variance transform and up
to 4 speech MLLR transforms. These transforms are estimated
in a lattice-based framework that relies on model-marked lattices,
which are generated for each branch using the respective triphones
adapted with global 1-best MLLR. The 1-best supervision is taken
from the output of the lattice generation stage.

The large rescoring lattices produced in the first stage are then
rescored with the adapted triphones and new lattices are gener-
ated on output. These lattices are then converted into confusion
networks [7] which provide a compact representation of the most
likely alternative word hypotheses as input for the system combi-
nation. A 1-best minimum word error hypothesis is also extracted
from the confusion networks for us in the quinphone rescoring
part.

In the quinphone part only 1-best global MLLR and full-variance
transforms are estimated. Again the adapted models are used to
rescore the original rescoring lattices generating output lattices and
then confusion networks.

All the confusion networks generated (2 from each branch)
serve as input to the system combination based on CNC.
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5. PERFORMANCE OF MODELLING TECHNIQUES

In this section the performance gains achieved by a number of ad-
vanced modelling techniques are illustrated in the context of a sys-
tem based on the structure introduced above. All experiments were
performed on the eval02 data set with automatic segmentations.

purpose WER

P1 supervision for VTLN 34.2
P2 supervision for MLLR 28.4
P3 lattice generation 24.8

Table 1. %WER on eval02 for lattice generation stage

Table 1 shows the error rates of the three passes of the lat-
tice generation stage. The gain from performing VTLN is very
substantial on this task (5.8% absolute). The difference between
the accuracy of P3 and P2 (3.6% abs.) is the result of perform-
ing global MLLR adaptation, using pronunciation probabilities,
smoothing the LM with the class trigram and wider pruning beams.

In the lattice rescoring stage a number of modelling techniques
were employed. These were

SAT Speaker Adaptive training using constrained MLLR trans-
forms estimated and fixed before MPE re-estimation (de-
tails in [11]).

HLDA Heteroscedastic Linear Discriminant Analysis. The PLP
features were augmented with third order derivatives and
projected down to 39 dimensions (details in [12]).

SPron Based on the multiple pronunciation dictionary and align-
ment of the training data a single pronunciation was se-
lected for each word using a probabilistic model [13].

Based on these techniques triphone and quinphone models for
four branches were trained using MPE on VTLN warped features:

A: SAT HLDA B: HLDA C: SPron HLDA D: non-HLDA

The triphone models in branch B correspond to the set used in
the lattice generation stage. The performance of each of the result-
ing 8 model sets before and after confusion network decoding is
shown in Table 2

Viterbi +CN

P4.A SAT tri 23.4 23.0
P4.B HLDA tri 23.9 23.6
P4.C SPron tri 23.4 23.4
P4.D non-HLDA tri 25.7 24.8

P5.A SAT quin 23.8 23.0
P5.B HLDA quin 24.1 23.5
P5.C SPron quin 23.9 23.3
P5.D non-HLDA quin 26.0 24.6

Table 2. %WER on eval02 for individual models

The use of HLDA gives a significant gain (branch B vs. D)
of 1.8% and 1.9% abs. for triphones and quinphones, respectively.
However, HLDA reduces the benefit of CN-decoding (tri: 0.3/0.9;
quin: 0.6/1.4), since the HLDA transform significantly changes
the range of acoustic scores and thus affects the distribution of
posteriors that are combined.

Both SAT and SPron consistently outperform the basic HLDA
model set with improvements of 0.5% for triphones and about
0.3% for quinphones. The use of CN-decoding seems to be less
effective if SPron dictionaries are used (particularly for P4). CN-
decoding sums the posteriors of multiple pronunciations of a word,
but in the SPron case the gain from this effect will be reduced.

In general the gains from CN decoding are smaller in the tri-
phone pass, this is assumed to be a result of using lattice MLLR
with multiple transforms which distorts the posterior distributions.

6. CHOOSING MODEL SETS FOR COMBINATION

For the integration in the full system it is not only the absolute
performance of the individual models that is relevant but also the
extent to which the outputs are complementary and thus effective
in system combination. The results of pairwise system combina-
tion for each pair of triphone systems are given in Table 3. The best
result is achieved by combining the two best single systems (SAT
and SPron), closely followed by the combination of the best and
the worst performing system (SAT and non-HLDA). It is surpris-
ing how effective the combination of the non-HLDA system with
any of the three HLDA systems is despite the fact that its word
error rate is 1.8% absolute below the SAT system’s.

System (P4) A B C D
SAT HLDA SPron non-HLDA
23.0 23.6 23.4 24.8

+A 23.1 22.6 22.7
+B 22.9 23.3
+C 22.8

Table 3. %WER of individual triphone systems and pairwise com-
bination on eval02 after lattice-MLLR/FV and CN

Instead of just combining pairs of systems, three systems can
be used to improve performance further as shown in Table 4 which
give results for all triphone 3-way combinations and the full 4-way
combination for comparison. The best combination uses the SAT,
SPron and non-HLDA branches (A+C+D).

Systems (P4) WER
A+B+C 22.7
A+B+D 22.8
A+C+D 22.4
B+C+D 22.7
A+B+C+D 22.6

Table 4. %WER 3-way combination of triphone systems (eval02)

The inclusion of the quinphone model output results in a fur-
ther performance improvement. The result of combining triphone
and quinphone outputs is shown in Table 5 for the three branches
most effective in combination at the triphone levels. The combina-
tion of all four branches, corresponding to 8-way combination, is
given for comparison.

Based on the combination results shown in Table 5 it was de-
cided to use the SAT, SPron and non-HLDA branches in the fi-
nal 2003 CU-HTK systems leading to 6-way system combination.
Figure 3 shows the resulting structure of the lattice rescoring stage.
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Systems (P4 & P5) WER
A+C+D (6-way) 21.7
A+B+C+D (8-way) 21.8

Table 5. Combination of triphone and quinphone systems (eval02)
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7. SYSTEM PERFORMANCE

The performance of the individual stages of the final 2003 system
on the official eval03 set is given in Table 6. The eval03 set consists
of Switchboard II phase 5 and Fisher data. The performance of the
individual passes and the final results show very similar patterns to
the results on the development set reported above.

Sw2P5 Fisher Total

P1 trans for VTLN 37.7 27.9 33.0
P2 trans for MLLR 31.8 22.6 27.4
P3 lat gen 27.5 19.3 23.5

P4.A SAT tri 25.4 18.2 21.9
P4.C SPron tri 25.6 18.5 22.2
P4.D non-HLDA tri 27.4 19.6 23.7

P5.A SAT quin 25.5 18.4 22.1
P5.C SPron quin 25.7 18.7 22.3
P5.D non-HLDA quin 27.5 19.6 23.7

CNC P4.[ACD]+P5.[ACD] 24.1 17.1 20.7

Table 6. %WER on eval03 for all stages of 2003 system

The overall system ran in 187 times real time and the final con-
fidence scores, which were estimated based on the confusion net-
work posteriors, had a Normalised Cross Entropy (NCE) of 0.318.

8. CONCLUSIONS

In this paper the development of the 2003 CU-HTK LVCSR sys-
tem for the transcription of Conversational Telephone Speech has
been described. A system structure geared towards system combi-
nation and employing sophisticated adaptation was introduced.

The effectiveness of a number of modelling techniques (SAT,
HLDA, SPron) was investigated and their performance compared
in the framework of the full LVCSR system. Based on the single
model performance and their contribution in system combination

a subset of models was chosen to be integrated in the final 2003
CU-HTK system. This system has three branches (corresponding
to SAT, non-HLDA and SPron), uses triphones and quinphones
and generates the final word hypotheses via 6-way system combi-
nation. In the DARPA/NIST 2003 Rich Transcription evaluation
this system exhibited state-of the-art performance, coming second
on the eval03 set and first on the progress set with no statistically
significant difference between the top two systems.
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