
EXACT TRAINING OF A NEURAL SYNTACTIC LANGUAGE MODEL

Ahmad Emami and Frederick Jelinek

Center for Language and Speech Processing
Johns Hopkins University

Baltimore, MD 21218
�emami, jelinek�@jhu.edu

ABSTRACT

The Structured Language Model aims at making a prediction of the
next word in a given word string by making a syntactical analysis
of the preceding words. However, it faces the data sparseness prob-
lem because of the large dimensionality and diversity of the infor-
mation available in the syntactic parses. In previous work [1, 2],
we proposed using neural network models for the SLM. The neural
network model is better suited to tackle the data sparseness prob-
lem and its use gave significant improvements in perplexity and
word error rate over the baseline SLM.

In this paper we present a new method of training the neural
net based SLM. The presented procedure makes use of the partial
parses hypothesized by the SLM itself, and is more expensive than
the approximate training method used in previous work.

Experiments with the new training method on the UPenn and
WSJ corpora show significant reductions in perplexity and word
error rate, achieving the lowest published results for the given cor-
pora.

1. INTRODUCTION

The role of a statistical language model is to assign a probabil-
ity � �� � to any given word string � � ���� � � � ��. This is
usually done in a left-to-right manner by factoring the probability:

� �� ��� ������������� ����
�
�

���
� �����

���

�
�

where the sequence of words ���� � � � �� is denoted by � �
� . Ide-

ally, the language model should use the entire history ����
� to

make its prediction for word ��. However, because of data sparse-
ness some equivalence classification of histories � ���

� should
be employed. The popular � -gram models classify the word
string � ���

� into � ���
����� and perform surprisingly well given

their simple structure. Nevertheless, they lack the ability to use
longer histories (locality problem), and still suffer from severe data
sparseness even for small values of � .

The Structured Language Model (SLM) aims at overcoming
the locality problem by constructing syntactical parses of a word
string and using the information from these partial parses to pre-
dict the next word [3]. In this manner, the SLM also addresses
one other problem of the � -gram models: the use of surface (lex-
ical) words only; by using information from the deeper syntactic
structures of the word strings.

Distributed representation of variables, combined with a neu-
ral network for probability estimation, has enabled the use of

This work was supported by the National Science Foundation under
grant No. IIS-0085940.

longer probabilistic dependencies [4]. The SLM uses� -gram type
dependencies for its internal components, and it would be desir-
able to implement them by neural networks that can use longer
and richer dependencies. In fact, the use of neural network mod-
els in the SLM has lead to significant reductions in both perplexity
and word error rate [1, 2].

In this paper we investigate further the use of a neural net
model as the component of the SLM responsible for predicting
the next word based on the partial parses of the preceding word
string. In previous work, the neural net component was trained on
parses extracted from an external treebank (an external source) [1].
We present here an exact training procedure, which optimizes the
proper likelihood function computed using the partial parses hy-
pothesized by the SLM itself. The new training method involves
using multiple partial parses at each position, which results in a dif-
ferent objective function, and hence a different training algorithm
for the neural network.

Section 2 serves as an introduction to the SLM. In Section 3
we describe the neural network model and explain how it is used
in the SLM, giving the details of the update algorithm for training
on multiple partial parses. Experimental results are presented in
Section 4.

2. STRUCTURED LANGUAGE MODEL

An extensive presentation of the SLM can be found in [3]. The
model assigns a probability � ���� � to every sentence � and
every possible binary parse � of � . The terminals of � are the
words of � with POS tags, and the nodes of � are annotated with
phrase headwords and non-terminal labels.

Let � be a sentence of � words to which we have prepended
the sentence beginning marker <s> and appended the sentence end
marker </s> so that �� �<s> and ���� �</s>. Let �� �
�� � � � �� be the word �-prefix of the sentence — the words from
the beginning of the sentence up to the current position �— and
���� the word-parse �-prefix. Figure 1(a) shows a word-parse
�-prefix where h_0, .., h_{-m} are the exposed heads, each
head being a pair (headword, non-terminal label), or (word, POS
tag) in the case of a root-only tree. For a given word-parse �-
prefix the headwords are percolated bottom-up in a rule-based non-
probabilistic procedure.

2.1. Probabilistic Model

The operation of the SLM is characterized by the finite state ma-
chine in Figure 1(b). The joint probability � ���� � of a word

I - 2450-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

sequence � and a complete parse � can be expressed as:

� ���� ��

����
���

�� ��� ������������ �����������������

��
�

���
� ���

�
������������ �����

�
� ����

�
����� (1)

where:
��������� is the word-parse �� � ��-prefix
� �� is the word predicted by PREDICTOR
� �� is the POS tag assigned to �� by the TAGGER
� �� � � is the number of operations the CONSTRUCTOR exe-
cutes at sentence position � before passing control to the PREDIC-
TOR (the ��� �� operation At position � is the null transition);
� ��	 denotes the � � �� CONSTRUCTOR operation carried out
at position � in the word string; the operations performed by the
CONSTRUCTOR ensure that all possible binary branching parses,
with all possible headword and non-terminal label assignments for
the �� 	 	 	 �� word sequence, can be generated. The ��� 	 	 	 �

�

�

sequence of CONSTRUCTOR operations at position � grows the
word-parse �� � ��-prefix into a word-parse �-prefix.

(<s>, SB) (w_p, t_p) (w_{p+1}, t_{p+1}) (w_k, t_k) w_{k+1}.... </s>

h_0 = (h_0.word, h_0.tag)h_{-1}h_{-m} = (<s>, SB)

assign probability to word

start a
new sentence

null tag word

expand partial parse

CONSTRUCTOR

TAGGERPREDICTOR

(a) word-parse �-prefix (b) FSM

Fig. 1. A partial parse, and FSM representation of SLM

The number of possible parses for a given sentence grows
exponentially with sentence length and therefore in practice, the
SLM uses a multi-stack search strategy with pruning to construct
and store only the more likely parses.

The language model probability assignment for the word at
position � � � in the input sentence is made using:

���� ��������� �
�
�
�
���

� �������������������� (2)

�������� � � ������
�
�
�
��

�
� ������� (3)

which ensures a proper probability normalization over strings � ,
where
� is the set of all parses present in our stacks at the current
stage �. The score ����� ��� is the weight of the partial parse
���� ��� in the stacks at position �.

As can be seen, the probability ������������� is used in
two different capacities in the operation of the SLM. Once in the
construction of and assignment of probabilities to the partial parses
(Equation 1), and then in computing the probability of the next
word using the already constructed partial parses (Equation 2). We
will refer to the second model as the SCORER component hence-
forth.

2.2. SCORER Training

The SLM training procedure involves using a treebank from which
each component model is estimated by training it on the cor-
responding events extracted from the complete parses. Conse-
quently, the PREDICTOR component is trained maximizing the
joint probability given in Equation 1 over the training data. Since
both the PREDICTOR and SCORER have the same probabilistic
model, it is possible to copy the estimated PREDICTOR directly
into the SCORER component. In fact, experiments with a neu-
ral net SCORER have shown that this “mismatched” training of

the SCORER leads to significant improvements in perplexity and
word error rate [1]. The training is mismatched because the model
is trained to maximize the probability given by Equation 1 while
it is going to be used in estimating probabilities in the form of
Equation 3. Therefore, it is desirable to train the SCORER specif-
ically to maximize the likelihood of the training data as given by
Equation 3.

In general, we can assume that the type of events encoun-
tered by the PREDICTOR and the SCORER are similar to each
other, and that the likelihood computed using Equation 1 would be
a good approximation of the more proper left-to-right likelihood
obtained from Equation 3.

In order to train the SCORER to directly optimize the left-to-
right likelihood, we must first estimate the PREDICTOR, the TAG-
GER, and the CONSTRUCTOR components. Then, using these
estimated models we will build (hypothesize) partial parses over
the same training data and compute their corresponding scores.
The SCORER component is then estimated using these scored par-
tial parses. Notice that in this case we would have multiple partial
parses per position (instead of one), therefore, the price paid for
this more “exact” training is a considerable increase in the number
of training events (which translates to a proportional increase in
model size and training time for � -gram and neural net models
respectively).

3. NEURAL NETWORK MODEL

In a neural network based language model words are represented
by points in a continuous multi-dimensional feature space and the
probability of a sequence of words is computed by means of a neu-
ral network. The feature vectors of the preceding words make up
the input to the neural network, which then will produce a proba-
bility distribution over a given vocabulary [4]. The main idea be-
hind this model is to make the estimation task easier by mapping
words from the high-dimensional discrete space they exist in, to
a low-dimensional continuous one where probability distributions
are smooth functions in their variables. The network achieves gen-
eralization by assigning to an unseen word sequence a probability
close to that of a “similar” word string seen in the training data.
The similarity is defined as being close in the multi-dimensional
feature space. Since the probability function is a smooth function
of the feature vectors, a small change in the features leads to only
a small change in the probability.

3.1. Model Details

Suppose the goal is to compute the probability of a certain event
� � � given the values ��� ��� � � � � �� of � conditioning vari-
ables. The conditional probability function ������ ��� � � � � ���
is determined in two parts:

1. A mapping that associates a real vector of fixed dimension
with each token in the input vocabulary �	: the set of all
tokens that can be used for prediction

2. A function which takes as the input the concatenation of
the feature vectors of the input items ��� ��� � � � � ��. The
function produces a conditional probability distribution (a
vector) over the output vocabulary ��: the set of all tokens
to be predicted.

Training is achieved by searching for parameters � of the neu-
ral network and the values of feature vectors that maximize the
penalized log-likelihood of the training corpus:

�� �
�

�
�
���� �������������

�
	
�������� (4)

I - 246

➡ ➡

where superscript � denotes the ��� event in the training data, � is
the training data size and ���� is a regularization term, which in
our case is a factor of L2 norm squared of hidden and output layer
weights.

outputhidden layer
input layer

L S

tanh softmax

y

x 1

x 2

x m

Fig. 2. The neural network architecture

The model architecture is given in Figure 2 [4]. The neural
network is fully connected and contains one hidden layer. The
operations of the input and hidden layers are given by:

�������������������
������� ���������� � �������

������� �
�
� ������	

�
� �
���	������

where ����� is the �-dimensional feature vector for token �. The
weights and biases of the hidden layer are denoted by �
� and ��

respectively, and 	 is the number of hidden units. Indices are used
to refer to specific elements of a matrix or vector.

At the output layer of the network we have:

��
�
� ������	

�
�
���	���������

���
���
�
� �

��

���	��������� (5)

with the weights and biases of the output layer denoted by

� and
��

 respectively. The softmax layer (Equation 5) ensures that the

outputs are valid probabilities and provides a suitable framework
for learning a probability distribution.

The ��� output of the neural network, corresponding to the ���

item �
 of the output vocabulary, is exactly the sought conditional
probability:
 � � ��� � �
����� ���� �

�
��.

The neural network weights and biases, as well as the input
feature vectors, are learned simultaneously using stochastic gradi-
ent descent training via back-propagation algorithm, with the ob-
jective function being the one given in Equation 4.

3.2. Neural Network Model for SLM

Recent work has shown that enriching the probabilistic dependen-
cies of the SLM component models leads to significant improve-
ments in the parsing accuracy as well as to reductions in both per-
plexity and word error rate [5]. However, a severe case of data
sparseness was observed in those experiments.

Therefore, it is desirable to use neural network – capable of
using long and enriched contexts – to model the SLM compo-
nents [1]. In this work we use a neural network model as the
SCORER component and train it on parses built either by an exter-
nal source or the baseline SLM. All other components are retained
from the baseline SLM [3] and are parameterized by � -gram in-
terpolated models.

We chose to “upgrade” only the SCORER component mainly
because doing so affects only the language model estimation part
of the SLM, keeping the parse construction machinery unchanged

from the baseline model, thus economizing on training effort. Fur-
thermore, the SCORER has much higher perplexity than either the
TAGGER, or the CONSTRUCTOR, leaving enough potential for
a significant improvement in the model’s performance.

3.3. Gradient Descent for Multiple Histories

The SLM stacks, at any stage �, contain the set
� of all partial
parses constructed and kept by the model up to that stage. The
probability of the next word, computed as a weighted average of
predictions by all the retained partial parses, is given by Equa-
tion 2. Representing the ��� partial parse at stage � as history �
�
and its weight by �
� , the probability of the word string ��

� is
given by:

� ���
� ��

��
	��

���	�
���

��	 �� ��	��
�
	 � (6)

Where ���� denotes the number of partial parses (histories) at stage
�. Consequently, the log-likelihood of a training data of size � will
be in the form:

���
�

	�� ���

����	�
���

��	 �� ��	��
�
	 �
�

(7)

Given this objective function, the gradient for every model pa-
rameter � is computed as follows:

�
��

��� � ��	��
�
��

�
����
���	�
���

��	 �� ��	��
�
	 ��

�

� �
���	�
���

�
	
�� ��	��

�
	
�

�
��

�
���	�
���

��	 �� ��	��
�
	 �

�

� �
� ��	�

���	�
���

��	 �
�
��

� ��	��
�
	 �

This means that for each word, the gradient (and parame-
ter updates) for each partial parse predicting the word is com-
puted, and the actual update will be a weighted average of the
obtained updates, where the weights are the fixed scores of the par-
tial parses.For more details on the algorithm the reader is referred
to [2].

4. EXPERIMENTS

The baseline SLM components are parameterized as follows: both
the PREDICTOR and the SCORER use the two previous heads
as the context. The CONSTRUCTOR uses the same context plus
the non-terminal tag of the third previous headword, and finally
the TAGGER uses the current word plus the tags only of the two
previous heads as its context.

All the components except the SCORER were trained on
parses obtained from an external source. The estimated model
was then used to construct (hypothesize) partial parses on the same
training data. The neural net SCORER was then trained on these
newly generated partial parses. The inputs to the network are a
mixture of words and non-terminal tags, with each item being rep-
resented by a 30 dimensional feature vector. All the neural nets in
these experiments have 100 hidden units and were trained with a
starting learning rate of ���
 .

Before training the neural net SCORER on the partial
parses, we trained a separate neural net SCORER on the same
events the PREDICTOR was estimated from (externally produced
parses) [1]. Following the convention of Section 2.2, we refer to
the latter model as the mismatched SCORER and to the one trained
on SLM hypothesized partial parses as the exact SCORER. To
speed up convergence, the exact SCORER training was initialized
by copying the parameters from the trained mismatched SCORER.
This resulted in a significant reduction in the number of iterations
required to train the model.

I - 247

➡ ➡

Our experimental setup is as follows: for perplexity results we
used the UPenn Treebank portion of the WSJ corpus. The corpus
is divided into training, heldout, and test sets containing 930k, 74k,
and 82k words respectively. We used an open vocabulary consist-
ing of 10k words. The input vocabulary includes an additional 40
part-of-speech (POS) and 54 non-terminal (NT) tags.

The WER experiments consisted of the re-scoring of the �-
best list output by a speech recognizer. We evaluated our models in
the WSJ DARPA’93 HUB1 test setup. The test set is a collection of
213 utterances for a total of 3446 words. The 20k words open vo-
cabulary and baseline 3-gram model are standard ones provided by
NIST and LDC. The input vocabulary was again augmented with
the 94 tags mentioned above; however, in order to save on train-
ing complexity, the output vocabulary was limited to the top 5k
words, resulting in a proportional reduction (� � times) in train-
ing time [6] (���� OOV on training data). For the words outside
this limited vocabulary we used the probabilities from a regular
back-off 5-gram model. The lattice and �-best lists were gener-
ated using the standard 3-gram model trained on 45M words of the
WSJ corpus. However, the baseline SLM, as well as all the neural
net models, were trained on only a 19M words subset of the WSJ
text. The heldout data consisted of 1.86M words.

Table 1 gives the perplexities on the UPenn corpus. The row
’SLM’ refers to the baseline model while the rows denoted by
’2HW’, ’3HW’, and ’(3+1)HW’ correspond to contexts consisting
of 2 previous heads, 3 previous heads, and 3 previous heads plus
the first opposite head. The ��� previous opposite head is the child
of ��� previous head that is not the head itself. The column head-
ings ’+slm’, ’+3gm’, and ’+5gm’ indicate linear interpolation with
the baseline SLM, a 3-gram, and a 5-gram model respectively. The
3-gram and 5-gram models are interpolated Kneser-Ney smoothed
models built on the same training data as the baseline and neu-
ral net based SLMs, and give a perplexity of 148 and 141 on the
test set, respectively. For each entry in the table, the perplexity of
the neural net based SLM for both mismatched and exact trained
SCORER are given, with the latter one in bold fonts. The neural
net SCORERs were trained for a maximum of 50 and 30 iterations
in the mismatch and exact cases respectively. As can be seen in
the table, the neural net based SLM improves significantly over
the baseline model. Furthermore, the exact model shows consis-
tent improvement over the mismatched case. The lowest figure in
the table (107) is the best published perplexity for this corpus.

The �-best re-scoring results are presented in Table 2. Here
’lattice’ denotes the scores obtained using the standard 3-gram
back-off model on the whole 45M words of the WSJ corpus. The
5-gram model (in ’+5gm’ column) is again an interpolated Kneser-
Ney smoothed model build on the same 19M word text as the
baseline and neural net based SLM models. All the interpolation
weights were found on the test set using grid search with a step size
of ����, the exception is the ’+all’ column were the SLM model is
combined with all other three models using a step size of ���. The
mismatched and exact SCORER networks were trained for 30 and
7 iterations respectively. The results show significant reductions in
the WER by using a neural net based SLM. Also, it can be clearly
seen that the exact SCORER trained model consistently outper-
forms the mismatch trained one. However, unlike the perplexity
results, the consistent increase of context length does not translate
to consistent improvement in WER. This has to do with the fact
that the perplexity of a language model in not highly correlated
with its performance in reducing the word error rate. Overall, the
best result is achieved by the exact model (����� WER), which

no-intpl +slm +3gm +5gm

SLM 161 161 137 132
2HW 166/141 135/125 125/119 121/115
3HW 161/136 132/121 123/116 119/112
(3+1)HW 155/131 129/117 121/113 117/110
All-3 152/122 128/114 120/110 117/107

Table 1. UPenn Perplexity

+slm +lattice +5gm +all

lattice 13.7 12.6 13.7 13.3 12.6
SLM 12.7 12.7 12.6 12.7 12.6
2HW 13.5/12.8 12.7/12.3 12.7/12.4 12.5/12.3 12.3/12.0
3HW 13.7/12.9 12.7/12.7 12.9/12.9 12.7/12.6 12.3/12.4
(3+1)HW 13.2/12.5 12.4/12.3 12.8/12.4 12.5/12.1 12.4/12.0

Table 2. WSJ Word Error Rate

is the lowest published WER for this particular test setup. Note
that this performance is attained using only a subset of the WSJ
training data.

5. CONCLUSIONS

In this paper we introduced an exact training procedure for the
neural net based Structured Language Model. The exact train-
ing achieves consistently better results than the previously used
method of approximate (mismatched) traininig. However, since
the training is performed using “multiple” partial parses at each
word position, there is a proportional increase in the required train-
ing time per iteration (though fewer iterations are required if the
model is initialized by copying the trained mismatched model).
In our experiments, the average number of partial parses in exact
training turned out to be ����� and ���� for the UPenn and WSJ
corpus respectively, increasing training times per iteration accord-
ingly. On the other hand, the advantage of the mismatched training
is that it can be used to obtain a quickly trained model that still out-
performs the baseline SLM significantly.

For future work we plan to use the presented training method
for a SLM model where all the components are modeled by neural
networks.

6. REFERENCES

[1] Ahmad Emami, Peng Xu, and Frederick Jelinek, “Using a
connectionist model in a syntactical based language model,”
in Proc. ICASSP, 2003.

[2] Ahmad Emami, “Improving a connectionist based syntactical
language model,” in Proc. of EUROSPEECH’03., Geneva,
Switzerland, September 2003.

[3] Ciprian Chelba and Frederick Jelinek, “Structured language
modeling,” Computer Speech and Language, vol. 14, no. 4,
pp. 283–332, October 2000.

[4] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Chris-
tian Jauvin, “A neural probabilistic language model,” Journal
of Machine Learning Reseach, vol. 3, pp. 1137–1155, 2003.

[5] Ciprian Chelba and Peng Xu, “Richer syntactic dependen-
cies for structured language modeling,” in Proceedings of the
ASRU Workshop, December 2001.

[6] Holger Schwenk and Jean-Luc Gauvain, “Connectionist
language modeling for large vocabulary continuous speech
recognition,” in Proc. ICASSP, 2002.

I - 248

➡ ➠

