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ABSTRACT

Automatic Speech Recognition (ASR) often occurs in circumstances
in which knowledge external to the speech signal, or meta-data,
is given. For example, a company receiving a call from a cus-
tomer might have access to a database record of that customer.
Conditioning the ASR models directly on this information to im-
prove the transcription accuracy is hampered because, generally,
the meta-data takes on many values and a training corpus will have
little data for each meta-data condition. This paper presents an al-
gorithm to construct language models conditioned on such meta-
data. It uses tree-based clustering of the the training data to auto-
matically derive meta-data projections, useful as language model
conditioning contexts. The algorithm was tested on a multiple do-
main voicemail transcription task. We compare the performance
of an adapted system aware of the domain shift to a system that
only has meta-data to infer that fact. The meta-data used were
the callerID strings associated with the voicemail messages. The
meta-data adapted system matched the performance of the system
adapted using the domain knowledge explicitly.

1. INTRODUCTION

Adaptation of Automatic Speech Recognition (ASR) models to the
operating environment and context has been shown repeatedly to
be of enormous benefit [1, 2]. This is particularly true of acous-
tic models, where many robustness issues that arise when dealing
with variations in channel and speaker characteristics have been
successfully addressed by use of unsupervised self-adaptation and
normalization techniques. Adaptation has also been shown to be
effective for language modeling (e.g. [3, 4, 5, 6, 7, 8]), although
this has been the subject of much less research to date. In light
of the popularity of the Maximum Entropy (ME) algorithm [3],
some language model adaptation efforts have looked at using long
distance history features, such as triggers or lexico-syntactic fea-
tures, and external features such as topic [4, 5, 6, 7]. Most of the
adaptation efforts have focused on adapting on the test data itself
(unsupervised self-adaptation) or on a sample representative of the
context of interest.

Some ASR systems use contextual information, associated with
but external to the speech signal such as gender or topic to shape
the model distributions. This external information can be either
explicitly given or inferred implicitly from the speech signal. For
example, a gender dependent system might use the test data likeli-
hood as modeled by gender dependent models to infer the speaker
gender. We will refer to the external information, regardless of
whether it was given or inferred, as meta-data.

Many applications have a large amount of meta-data available,
e.g. from databases associated with the speech to be recognized.
For example, a company receiving a call from a customer might
have access to a database record of that customer, revealing their
geographical location and product preferences. The models used
in ASR systems currently do not use that type of information.

If the meta-data is sparse in the sense that it can take on few
values (like gender), meta-data dependent models can be trained
directly. Another approach is to adapt a meta-data independent
model using the data corresponding to a specific meta-data value.
However, in many scenarios the meta-data space will be large, i.e.
it can take on many values. As a result, there will be little data
available for a specific meta-data value, making direct condition-
ing infeasible. However, if the highly fragmented meta-data can
be projected to a small number of conditioning contexts, it may
be used to condition the ASR models. For the gender example, it
might not be possible to create speaker-identity dependent models
but if a projection can be found that provides clusters representing
gender, conditioning on the speaker identity will be beneficial.

This paper describes an algorithm to construct meta-data con-
ditional language models suitable for highly fragmented meta-data.
It uses divisive likelihood-based clustering techniques to find pro-
jections of the meta-data, which is an obvious choice in the face
of such fragmentation. A meta-data conditional model is then
obtained by merging the meta-data conditional counts, weighted
based on the given meta-data value. Section 2 describes the al-
gorithm. In section 3 experimental results for a voicemail tran-
scription task are presented. Section 4 provides conclusions and
discussion.

2. ALGORITHM

The language model estimation algorithm consists of two parts.
The first part is a tree clustering step which is performed at training
time. The clustering result produced by the first step is then used at
test time to estimate the language model used in recognition. Both
steps are described in detail below.

2.1. Tree clustering

For an n-gram model of order k, the tree-clustering step involves
estimating models for each order ≤ k, beginning with the unigram
model. The method used for the unigram tree is different from
this higher order trees, and will be presented first. The output of
the unigram clustering is used for the higher-order trees, which are
built in two steps to control the greediness of the algorithm, allow-
ing different meta-data dependencies for different histories.

Counts
The tree clustering algorithm groups history and meta-data depen-
dent n-gram count distributions. For a given vocabulary V , let
w ∈ V denote words, and h ∈ V k denote a history, or condition-
ing sequence of k words. Let X be the set of possible meta-data
values. Let C(w | h, x) denote the raw count distribution across
words w ∈ V following history h ∈ V ∗, in meta-data condition
x ∈ X . Then C(w | h) =

∑
x∈X C(w | h, x).

The clustering algorithm uses a likelihood objective. Likeli-
hoods are computed based on smoothed probability distribution
estimates to account for unobserved events. The smoothing tech-
nique uses Good-Turing discounting [9] and Katz [10] backoff es-
timation to provide probability estimates from counts, in the stan-
dard way. Let d(f) denote the discounting fraction for frequency
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f , such that 0 < d(f) ≤ 1, where d(f) is calculated once using
Katz backoff estimation on the sample of meta-data independent
counts1.

The meta-data dependent count distributions are clustered by
building trees in increasing Markov order, starting with unigrams.
The results of the unigram tree clustering are used both for sub-
sequent unigram probability estimation as well as for building the
higher order trees.

Unigram tree
Since for the unigram count distributions h ∈ V 0 (i.e. there is no
word history) , the count distributions used in building this tree are
C(w | x) for all x ∈ X . The tree is built by greedily splitting
the leaf that provides the largest likelihood gain. Leaf splits are
evaluated using the Chou algorithm described in [11], which will
be described here briefly. The evaluation of the merit of a split is
an iterative process. Let A ⊆ X denote the set of meta-data values
that are assigned to the leaf, the split gain is evaluated as follows:

1. Estimate a parent probability distribution

C(w | A) =
∑
x∈A

C(w | x) (1)

C(A) =
∑
w∈V

C(w | A) (2)

P(w | A) =

{
d(C(w|A))C(w|A)

C(A)
if C(w | A) > 0

δ otherwise
(3)

choosing δ to ensure proper normalization and estimate the
parent data log likelihood

Lp =
∑
w∈V

C(w | A) log(P(w | A)). (4)

Set m = 1.
2. Randomly partition set A into two disjoint subsets L0 and

R0, i.e. A = L0 ∪ R0 and L0 ∩ R0 = ∅.
3. For Q in {Lm−1,Rm−1} compute,

C(w | Q) =
∑
x∈Q

C(w | x) (5)

C(Q) =
∑
w∈V

C(w | Q) (6)

P(w | Q) =

{
d(C(w|Q))C(w|Q)

C(Q)
if C(w | Q) > 0

αP(w | A) otherwise
(7)

where α is chosen to ensure a normalized distribution.
4. Set Lm = Rm = ∅. For each member x ∈ A, evaluate

Ll(x) =
∑
w∈V

C(w | x) log(P(w | Lm−1)) (8)

and Lr(x) =
∑
w∈V

C(w | x) log(P(w | Rm−1)) (9)

and assign x to Lm if Ll(x) > Lr(x), to Rm otherwise.
5. Compute total likelihood

L(A) =
∑

x∈Lm

Ll(x) +
∑

x∈Rm

Lr(x). (10)

If m > 1 and L(A) = B goto 7.
6. Set m = m + 1. Set B = L(A). Go to 3.

7. Set G = B − Lp. Set L = Lm, R = Rm.

1For frequencies 6 and higher, d(f) = 1

After termination of this iterative process, a partition of A into two
subsets L and R is defined providing a likelihood gain G associ-
ated with that partition.

The unigram tree is built by iteratively splitting the leaf with
the largest likelihood gain and evaluating the likelihood gain of
the new leaves created by those splits. Once the likelihood gain
of the best leaf split falls below a given threshold Tunigram, the
unigram tree building step terminates. The unigram tree will then
define N leaf sets, grouping the observed meta-data contexts X .
The sets defined in this N -way partition will be denoted as S =
{s1, s2, · · · , sN}.
Higher order trees
Like the unigram tree, the higher order (h ∈ V k, k > 0) trees
define a partition of the history and meta-data dependent n-gram
count distributions. The count distributions used in building these
trees are C(w | h, x) for all x ∈ X and h ∈ V n−1. The higher
order trees, like the unigram tree, are built by greedily splitting the
leaf that provides the largest likelihood gain. Unlike the unigram
tree, the higher order trees are built in two stages.

1. In the first stage, the count distributions are partitioned al-
lowing only history dependent splits. In other words, only
subsets of Vn−1 are considered, no subsets of X are al-
lowed. As a result, all meta-data dependent occurrences of
a history h are forced to fall in the same leaf. This cluster-
ing stage again uses the Chou algorithm for the evaluation
of the likelihood gains from splitting leaves. Once this algo-
rithm terminates based on a given likelihood gain threshold
Thistory , the leaves of the tree will contain groups of his-
tories. We will refer to these leaves or nodes as the history
nodes of the tree.

2. In the second stage, the leaves are split further but now only
via domain splits. In other words, only partitions of X are
allowed at this stage. The gain from splitting leaves is eval-
uated similarly to the Chou algorithm, however instead of
repartitioning based on likelihood (step 4 of the Chou al-
gorithm), only partitions based on class memberships are
considered. The classes that are considered are those de-
fined by the unigram tree leaves, i.e. S. The gains for par-
titioning on each class in S are computed and the partition
that results in the largest likelihood increase is used if that
leaf is split. Again, a given likelihood threshold Tngram

determines when the tree growing algorithm terminates.

After termination of the tree growing algorithm, each history
h ∈ V n−1 is assigned to one or more leaf nodes. The number of
leaf nodes the history appears in determines the number of distinct
meta-data projections for that history.
Sibling distance estimation
The final step in the the tree clustering stage of the algorithm is a
distance computation. Let J denote the set of nodes containing the
root node of the unigram tree and the history nodes of the higher
order trees. For each node k ∈ J , let Uk denote the set of leaves
that are descendants of k. Then for each k ∈ J

1. For each node m ∈ Uk compute P(w | m) as in step 1
of the Chou algorithm, i.e. estimate the leaf conditional
distribution based on the subset of histories and meta-data
values that were assigned to that leaf.

2. For each node m ∈ Uk compute a distance D(m, p) to all
p ∈ Uk. The distance is defined as the Kullback-Liebler
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distance

D(m, p) =
∑
w∈V

P(w | m) log

(
P(w | m)

P(w | p)

)
. (11)

2.2. Language Model Estimation
The language model estimation step is performed at test time using
the trees designed in the training phase. It assumes a meta-data
condition v is given for the test data that is to be recognized.

The language model is constructed by estimating history de-
pendent distributions for all histories h seen in the training data.
Together with the meta-data value v ∈ X , each history h identi-
fies a leaf node m ∈ Uk, for some k ∈ J . The set of nodes p ∈ Uk

define the various meta-data projections for history h. Given the
meta-data value v, m is identified as the projection applicable to
the current test data. Estimating a language model on the subset
of the training data represented by m will likely produce a less
accurate model due to sparse data resulting from the reduction of
the training set size. To prevent this, all data from all meta-data
projections p ∈ Uk are used, but weighted based on the distance
from m to p, i.e. D(m, p).

The history dependent distribution is estimated in a two step
process.

1. Estimate the discounting factors for the observed words w
based on the unweighted, summed counts

C(w) =
∑

q∈Uk

C(w | q) (12)

z(w) = d(C(w)) (13)

2. Estimate the history dependent distribution based on weighted,
discounted counts

P(w | h) =

{ ∑
q∈Uk

τqz(w)C(w|q)∑
q∈Uk

∑
w∈V τqC(w|q)

if C(w) > 0

γP(w | h′) otherwise
(14)

where h′ is the history h without its initial word. The value
of γ is chosen to ensure proper normalization.

The count scales τq are derived from the distances D(m, p) as

τq =

{
1

D(m,q)
if 1

D(m,q)
≤ Φ

Φ otherwise
(15)

where Φ is a parameter of the algorithm2.

3. EXPERIMENTS

We evaluated the proposed algorithm in a controlled experiment.
For this experiment, we set up a scenario using two corpora. The
Scanmail corpus is a general voicemail corpus, described in detail
in [2]. The SSNIFR corpus consists of voicemail message received
at a network center customer care voicemail box, and was previ-
ously used in the work described in [8]. Although both corpora
consist of voicemail messages, the language differs significantly.
As shown in [8], adaptation of a language model built on Scan-
mail messages to the SSNIFR domain provides as much as a 7%
accuracy improvement.

The experiment is controlled in the sense that we know what
accuracy improvement can be obtained if it is known that the SS-
NIFR corpus differs in distributional characteristics to the Scan-
mail corpus. The question is how much of this accuracy improve-
ment can be obtained if the data partition is not known and only

2One can interpret this parameter as setting the maximum distance for
a sibling node to be considered ’in-domain’, and hence receive the same
weight as the node m itself. If Φ=5, then another node must be within
KL-distance 0.2 to be considered in-domain.

Corpus Set Message Unique Word Speech
name type count CallerID count duration

strings (minutes)

Scanmail Train 6489 2072 803838 4302
Scanmail Test 169 149 21736 114

SSNIFR Train 300 183 33386 195
SSNIFR Test 120 95 13164 79

Table 1. Corpus statistics.

a highly fragmented meta-data variable related to that partition is
given. The meta-data used in this experiment are callerID strings
provided by the telephone switch for every incoming message. For
a subset of both corpora, this callerID information is available. Us-
ing these subsets we constructed training and test sets for both the
Scanmail and SSNIFR domains using random partitions. Statis-
tics for these sets are given in table 1. Out of the 169 CallerID
strings associated with the Scanmail test messages, 136 were seen
in the training set. Out of the 120 CallerID strings associated with
the SSNIFR test messages, 78 were seen in the training set. There
were no CallerID strings overlapping between the Scanmail and
SSNIFR corpora.

For the experiments, three conventional Katz backoff trigram
models were trained on different data sets. The model trained on
the SSNIFR training set will be referred to as SSNIFR, the one
trained on the Scanmail training set will be referred to as SM. The
model referred to as MRG was obtained by estimation on the com-
bined SSNIFR and SM training sets. The fourth model, referred to
as MAP was obtained using the weighted count merging approach
described in detail in [8]. The weight parameter was set to 5 which
was empirically determined to be the optimal value. The results
obtained using these models give the performance bounds using
the domain information assuming this is know.

Two meta-data dependent models were trained using the pro-
posed algorithm on the combined SSNIFR and Scanmail training
sets. As meta-data the callerID strings were used, hence the size
of the set X was 2255 corresponding to the number of unique cal-
lerID strings seen in the combined corpora. Both meta-data de-
pendent models used the same threshold values Thistory = 1000
and Tngram = 0 and used the same scaling parameter Φ = 5.
The likelihood threshold Tunigram, however, was set to 1500 for
the model referred to as SpkrS and 1000 for the model referred to
as SpkrL. These models represent the scenario where the domain
shift is not known but a highly fragmented meta-data variable is
available possibly revealing that fact.

At test time, the meta-data dependent language models were
created on a per message basis, using the callerID strings associ-
ated with the test messages. If a callerID string was not seen in the
training data, the system would default to the MRG model. In the
absence of any knowledge about the heterogeneity of the corpus,
this would be the most appropriate model.

The run-time vs. accuracy curves showing the performance of
all the models on the SSNIFR test set are given in figure 1. The
performance of the SM, MRG, SpkrS and SpkrL models on the
Scanmail test set are given in figure 2. It can be seen that on the
SSNIFR test data, the MAP model gives an additional gain over
the MRG model. Both models outperform the SSNIFR model, as
reported in [8]. It also shows that the SpkrS model matches the
MAP model performance. The SpkrL model does not perform as
well as the SpkrS model but still provides a performance gain over
the MRG model.

On the Scanmail test data, both the SM and MRG model give
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Fig. 1. Recognition performance on the SSNIFR test set.

equal performance. The SpkrS and SpkrL models perform as well
or show a small improvement over the baseline models.

4. CONCLUSIONS

The experimental results show that the algorithm succeeds in find-
ing meta-data projections useful for conditioning the language model.
When provided only with very fragmented meta-data and no ex-
plicit knowledge about a domain shift for a small subset of the
data, the algorithm successfully created a model that matched the
performance of a model adapted using the domain shift knowl-
edge.

The weight estimation based on the inverse Kullback-Liebler
distance computation appears to provide a reasonable estimate of
the proximity of different meta-data projections. This is shown by
the small performance difference between SpkrS and SpkrL. In the
SpkrS model, 182 out of the 183 SSNIFR CallerID strings were in
a single leaf of the unigram tree, along with some Scanmail mes-
sages. This means the model effectively found the SSNIFR subset
from the rest of the data. In the SpkrL model, due to the lower
Tunigram parameter, that leaf was split further into 3 subsets. The
resulting model performed almost as well since the distance be-
tween these subsets was found to be small and hence the SSNIFR
data was weighted approximately equally even though it was par-
titioned into multiple subsets.

The fact that the meta-data dependency did also provide a
small accuracy improvement on the Scanmail data, where little or
no gain from meta-data conditioning was expected reinforces the
view that the distance is appropriate.

That the SpkrS model matches the MAP performance shows
that the algorithm is using the leaf distances to appropriately weight
the contributions of various meta-data projections. Note that only
78 out of the 120 test messages used a meta-dependent model as
the other messages defaulted to the MRG model due to a novel
CallerID string.

Various aspects of the algorithm can possibly benefit from fur-
ther investigation. First, the set definitions inferred from the uni-
gram tree might not be the optimal choice for use in the higher or-
der trees. Second, other distance and weight relationships can be
considered that might give better performance. Besides algorith-
mic improvements, one can envision many empirical trials testing
the conditioning benefit of various meta-data sources.
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Fig. 2. Recognition performance on the Scanmail test set.
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