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ABSTRACT

We propose a new algorithm for overdetermined blind source sep-
aration based on multistage independent component analysis (MS
ICA). To improve the separation performance, we have proposed
MSICA in which frequency-domain ICA and time-domain ICA
are cascaded. In the original MSICA, the specific mixing model,
where the number of microphones is equal to that of sources, was
assumed. However, additional microphones are required to achieve
an improved separation performance under reverberant environ-
ments. This leads to alternative problems, e.g., a complication of
the permutation problem. In order to solve them, we propose a new
extended MSICA using subarray processing, where the number of
microphones and that of sources are set to be the same in every
subarray. The experimental results obtained under the real envi-
ronment reveal that the separation performance of the proposed
MSICA is improved as the number of microphones is increased.

1. INTRODUCTION

Blind source separation (BSS) is an approach for estimating orig-
inal source signals only from the information of the mixed sig-
nals observed in each input channel. This technique is applica-
ble to high-quality hands-free speech recognition systems. Many
BSS methods based on independent component analysis (ICA)
[1] have been proposed [2, 3] for the acoustic signal separation.
However, the performances of these methods degrade particularly
seriously under heavily reverberant conditions. In order to im-
prove the separation performance, we have proposed multistage
ICA (MSICA) [4], in which frequency-domain ICA (FDICA) [3,
5] and time-domain ICA (TDICA) [2] are cascaded (see Fig. 1).
In this method, first, FDICA finds an approximate solution to sep-
arate the sources to a certain extent, and finally TDICA removes
the residual crosstalk components arising in FDICA.

In the conventional ICA research, the specific mixing model is
often assumed where the number of microphones is equal to that
of sources. In the original MSICA, we also assumed this model
and performed the source separation. However, additional mi-
crophones are required to achieve an improved separation perfor-
mance because of the existence of the reflection and the reverber-
ation component. In this paper, we set the number of microphones
to be larger than that of sources and we extend the conventional
MSICA into a new MSICA method using a large microphones.
We point out that the following problems arise in the simple ex-
tension of MSICA: (1) the permutation problem [3] in FDICA
part becomes very complicated, and (2) the solution of FDICA
is likely to be trapped within a trivial solution. In this paper, as a
robust method against these problems, we propose a new MSICA
method using subarray processing, where the number of each sub-
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Fig. 1. Blind source separation procedure performed in original
MSICA which has been previously proposed by the authors [4].

array’s microphones is set to be equal to that of the sources, and
the outputs of FDICA performed in every subarray are weighted to
be inserted into TDICA. The experimental results obtained under
real acoustic conditions reveal that the separation performance of
the proposed MSICA is improved over that of an original MSICA
as the number of microphones is increased.

2. CONVENTIONAL MSICA AND PROBLEMS

2.1. Sound Mixing Model of Microphone Array

In general, the observed signals �K(t) = [x1(t), · · · , xK(t)]T in
which multiple source signals �L(t) = [s1(t), · · · , sL(t)]T are
convolved with room impulse responses (see Fig. 1) are obtained
as �K(t) =

�P−1
τ=0 �KL(τ) �L(t − τ), where K is the number

of array elements (microphones) and L is the number of sound
sources. Here, �KL(τ) = [aij(τ)]ij ([·]ij denotes the matrix in
which the ij-th element is [·]) is the K × L mixing filter matrix,
and P is the length of the impulse response.

2.2. BSS Algorithm Based on MSICA[4]

Figure 1 shows the procedure of the original MSICA. In the case
of K = L, MSICA is conducted in the following steps. First, we
perform FDICA [3, 5] to separate the source signals to some extent
with the advantage of high stability. The output signals �L(t) =

[z1(t), · · · , zL(t)]T from FDICA can be given as �L(t) =
�Q−1

τ=0

�LL(τ) �L(t − τ), where �LL(τ) = [vij(τ)]ij is the separation
filter matrix for FDICA, and Q is the length of the separation filter
of FDICA. In FDICA, we optimize �LL(τ) so that the narrow-
band output signals are mutually independent at each frequency.

Second, we regard the output signals �L(t) from FDICA as
the input signals for TDICA, and we can remove the residual cross-
talk components of FDICA by using TDICA. Finally, we regard
the output signals from TDICA as the resultant separated signals.
The separated signals �L(t) = [y1(t), · · · , yL(t)]T of MSICA can
be given as �L(t) =

�R−1
τ=0 �LL(τ) �L(t − τ), where �LL(τ)

is the separation filter matrix for TDICA, and R is the length of
the separation filter of TDICA. In TDICA, we optimize �LL(τ)
so that the fullband separated signals are mutually independent.
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Fig. 2. Blind source separation procedure performed in the pro-
posed MSICA using subarray processing.

2.3. Simple Extension of Conventional MSICA

In the conventional MSICA, the specific mixing model is assumed,
where the number of microphones is equal to that of sources. How-
ever, additional microphones are required to achieve an improved
separation performance because of the reflection and the reverber-
ation component. Thus, we should set the number of microphones
to be larger than that of sources (i.e., K > L), and we extend
the conventional MSICA into a new MSICA method by using a
large number of microphones. First, as the simple extension of
MSICA, we consider the following two methods in the specific
case of K > L.
[Method 1] The K output signals are obtained from FDICA and
L separated signals are obtained from TDICA: �K(t) =

�Q−1
τ=0

�KK(τ) �K(t− τ), �L(t) =
�R−1

τ=0 �LK(τ) �K(t− τ). There
is a permutation problem [3] of sources in every frequency bin in
FDICA. By using recently proposed techniques [6, 7, 8], we can
easily solve the problem only in the case of K = L. However, (P1)
the permutation problem in FDICA becomes very complicated as
the number of microphones is increased. Also, (P2) the discrim-
ination of the output signals corresponding to the true sources is
needed because there exist K − L imaginary outputs. Therefore
Method 1 is not applicable to separating sources in the real envi-
ronment.
[Method 2] The L output signals are obtained from FDICA and
the L separated signals are obtained from TDICA: �L(t) =

�Q−1
τ=0

�LK(τ) �K(t − τ), �L(t) =
�R−1

τ=0 �LL(τ) �L(t − τ). There
still exist some problems as follows. (P3) In the iterative learn-
ing of FDICA, the solution is likely to be trapped within a trivial
solution as described in Sect. 4.2. (P4) We cannot utilize all the
information of the observed signals at K microphones in TDICA
because the number of the input signals for TDICA is decreased to
L by FDICA.

Due to these problems, a new extension algorithm of MSICA
which is not affected by (P1)–(P4) is desired to achieve a superior
separation performance. Therefore, in the next section we propose
a new BSS algorithm based on the extended MSICA using subar-
ray processing.

3. PROPOSED MSICA USING SUBARRAY PROCESSING

In the proposed extended MSICA, we regard the K observed sig-
nals as combinations of the L(< K) observed signals, and we
regard this combination as a subarray (see Fig. 2). First, we divide

the whole inputs into K − 1 subarrays, and we perform FDICA
in every subarray. The output signals �(n)

L (t) = [z
(n)
1 (t), · · · ,

z
(n)
L (t)]T from FDICA in the n-th subarray can be given as �(n)

L (t)

=
�Q−1

τ=0 �
(n)
LL(τ) �

(n)
L (t−τ), where �(n)

LL(τ) is the separation fil-

ter matrix of FDICA in the n-th subarray and �(n)
L (t) = [xn(t),

xn+1(t), · · · , xn+L−1(t)]
T. As the FDICA algorithm for opti-

mization of the separation filter �(n)
LL(τ), we introduce the fast-

convergence FDICA proposed by one of the authors [5]. In the
FDICA, the optimal �(n)

LL(τ) is obtained by the following iterative
equation [3]:

�
(n)
LL(f)i+1 = α

�
diag

��
Φ(�

(n)
L (f, m))�

(n)
L (f, m)H

�
m

�

− �
Φ(�

(n)
L (f, m))�

(n)
L (f, m)H

�
m

�
�

(n)
LL(f)i

+ �
(n)
LL(f)i, (1)

where� (n)
LL(f) is a Fourier transform result of �(n)

LL(τ),�(n)
L (f, m)

is the narrow-band output signal in the time-frequency domain and
diag(·) is the operation for setting every off-diagonal element of
matrix as zero. Also, f is frequency, m is the analysis frame of
short-time DFT, 〈·〉m denotes the frame-averaging operator, i is
used to express the value of the i-th step in the iterations, and α
is the step-size parameter. We define the nonlinear vector function
Φ(·) as

Φ(�L(f, m) ≡ �
Φ(Z1(f, m)), · · · , Φ(ZL(f, m))

�T
, (2)

Φ(Zl(f, m)) ≡ tanh(Z
(R)
l (f, m)) + j ·tanh(Z

(I)
l (f, m)), (3)

where Z
(R)
l (f, m) and Z

(I)
l (f, m) are the real and imaginary parts

of Zl(f, m), respectively.
Next, we regard all output signals from FDICA in K − 1 sub-

arrays as the input signals for TDICA, and we remove the resid-
ual crosstalk components from FDICAs. The resultant separated
signals �(n)

L (t) can be given as �L(t) =
�R−1

τ=0 �LL·(K−1)(τ)
�L·(K−1)(t − τ), where �LL·(K−1)(τ) is the L × L · (K − 1)
separation filter matrix and

�L·(K−1)(t) = [z
(1)
1 (t), · · · , z

(K−1)
1 (t), z

(1)
2 (t), · · · ,

z
(K−1)
2 (t), · · · , z

(1)
L (t), · · · , z

(K−1)
L (t)]T. (4)

In the TDICA, the optimal �LL·(K−1)(τ) is obtained by the fol-
lowing iterative equation [9]:

�LL·(K−1)(τ)i+1 =β

R−1	
d=0



diag

�
〈�(�L(t))�L(t−τ +d)T〉t

�

−〈�(�L(t))�L(t−τ +d)T〉t
�
�LL·(K−1)(d)i

+�LL·(K−1)(τ)i, (5)

where β is the step-size parameter, 〈·〉t denotes the time-aver- ag-
ing operator, and �(�L(t)) ≡ [tanh(y1(t)), · · · , tanh(yL(t))]T.

We can easily solve the permutation problem by using the con-
ventional methods [6, 7, 8] because the number of microphones is
equal to that of sources in every subarray. Also, the discrimination
of the output signals corresponding to the true sources is not re-
quired because the number of output signals from FDICA is equal
to that of sources, i.e., there are no imaginary outputs. The sepa-
ration filter of FDICA is likely to converge on the optimal point,
particularly in the case of K = L (see Sect. 4.2). Therefore, in the
proposed MSICA, the problems (P1)–(P3) described in Sect. 2.3
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do not arise. In addition, we can utilize the information of all the
element of the microphone array in the TDICA because we use
the output signals from FDICA in all subarrays with the informa-
tion from all microphones. Therefore, (P4) is also solved by the
proposed MSICA.

4. EXPERIMENTS AND RESULTS

4.1. Experimental Setup

A 14-element linear array with the interelement spacing of 2.83 cm
is assumed. The speech signals are assumed to arrive from two di-
rections, −40◦ and 20◦. The distance between the microphone
array and the loudspeakers is 2.0 m. Two sentences spoken by two
male and two female speakers are used as the original speech sam-
ples and the sampling frequency is 8 kHz. Using these sentences,
we obtain 12 combinations with respect to speakers and source di-
rections. In these experiments, we use the following signals as the
source signals: the original speech convolved with the impulse re-
sponses specified by the reverberation times of 300 ms. We use
the impulse responses recorded in a real room selected from the
Real World Computing Partnership (RWCP) sound scene database
[10]. In order to evaluate the performance, we used the noise re-
duction rate (NRR), which is defined as the output signal-to-noise
ratio (SNR) in dB minus input SNR in dB. Also, the filter length
of FDICA is 1024 taps.

4.2. Problems in Simply Extended MSICA Based on Method 2

In order to visually evaluate the convergence by FDICA of Method 2,
we plot the directivity pattern of the separation filter �LK(τ) pro-
vided by FDICA of Method 2. Figure 3 shows the directivity
pattern for a different number of microphones (K = 2 or 12),
where “Filter 1” is extracting source 1, and “Filter 2” is extract-
ing source 2. In Fig. 3 (a), the directional nulls of the separation
filters given by FDICA steer in the direction of interference when
two microphones are used. However, in Fig. 3 (b) where 12 mi-
crophones are used, the nulls of separation filter 2 steer not only
in the direction of interference but also in the target speech direc-
tion. Therefore, the output signal from separation filter 2 becomes
a zero signal.

In FDICA, the separation filters are updated so that the output
signals are mutually independent and the separated signal from
FDICA can be generally given as Zl(f, m) = al(f) Sl(f, m),
where Sl(f, m) is the source signal in the time-frequency domain
and al(f) is the arbitrary complex-valued coefficient. The coef-
ficient al(f) is not determined because we evaluate only the in-
dependence between the output signals in FDICA. The coefficient
a1(f) in Fig. 3(b) becomes approximately zero and the output sig-
nal from filter 1 becomes the zero signal. The speech signal and
the zero signal are mutually independent and consequently, the in-
dependence assumption holds. However, needless to say, this so-
lution is trivial with respect to the separation of source signals.
This phenomenon occurs due to the fact that the degree of free-
dom of the separation filter becomes high when we use many mi-
crophones. We can conclude that the separation filter with a low
degree of freedom is desirable in FDICA. This is the motivation
behind proposing the extended MSICA using subarray processing
in which the number of each subarray’s microphones is equal to
that of sources.

4.3. Separation Performance in Every Subarray

Figure 4 shows the NRR results of FDICA and the conventional
MSICA for different subarrays. The separation filter length of

-50

-40

-30

-20

-10

 0

 10

-60 -40 -20  0  20  40  60

G
ai

n 
[d

B]

Source 1 Source 2

-50

-40

-30

-20

-10

 0

 10

-60 -40 -20  0  20  40  60

G
ai

n 
[d

B]

Direction [degrees]

Filter 1
Filter 2

Filter 1
Filter 2(a)

(b)

Fig. 3. Directivity patterns in 1812.5 Hz of the separation filters
provided by FDICAs of Method 2 by using (a) two microphones
are (b) 12 microphones. The number of sources is two.

the TDICA part in MSICA is 2048 taps. These separation per-
formances are averaged for 12 combinations of speakers. From
Fig. 4, we can confirm that the source-separation performances in
each subarray are disperse. We speculate the reason as being that
there are differences in the standing wave condition, the reflection
component, and reverberant component at each microphone. The
blind determination of the subarray which can achieve a superior
separation performance is a difficult problem. Also, we must per-
form the conventional MSICA in all subarrays and huge amounts
of calculations are required. Therefore, it is unreasonable to per-
form the original MSICA in each subarray.

4.4. Separation Results of Proposed MSICA Using Subarray
Processing

In the proposed MSICA using subarray processing, the micro-
phones which are selected symmetrically with respect to the array
center are used. For example, the “four-element array” consists of
microphones #6, #7, #8, and #9.

As the initial value of the TDICA part in the proposed MSICA,
we introduce the following coefficient:

�LL·(K−1)(τ) =

�����
����

�
c−γ

k−(l−1)×(K−1)�K−1
n=1 c−γ

n

·IDFT[exp(jωdlk)]

�
lk

if (l − 1)×(K − 1)<k≤ l×(K − 1),
[0]lk otherwise,

(6)

cn =
T�

τ=−T

�
|〈φ(z

(n)
i (t))z

(n)
j (t − τ)〉t|

+|〈φ(z
(n)
j (t))z

(n)
i (t − τ)〉t|

	
, (7)

where IDFT[·] denotes an inverse DFT of ·, T is the length of the
output signals from FDICA, ω is an angular frequency, and dlk is
the phase delay of input signals for TDICA so that the correlation
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between the input signal zl
(i) and zl

(j) is maximum. Also, γ is
the enhancement parameter to weight with the correlation cn. cn

corresponds to the Frobenius norm of the update term {·} in the
TDICA algorithm given by Eq. (5), and we estimate the degree of
the separation performance by using this value. We introduce this
filter (Eq. (6)) as the initial value of the TDICA part in MSICA.
If γ = 0 in Eq. (6), this filter corresponds to a conventional delay-
and-sum beamformer. On the other hand, highly separated output
signals from specific FDICAs are strongly weighted as the γ is
increased. We compare the separation performances of the initial
value and the proposed MSICA by changing γ and the number of
microphones.

Figures 5 and 6 show the NRR results of the initial value and
the proposed MSICA for different γ and numbers of microphones.
From Fig. 5, the separation performances of the initial value for
the proposed MSICA are improved as γ is increased in all micro-
phones. Therefore, the weighting equation (Eq. (6)) with the input
signals for TDICA works effectively. The final separation perfor-
mance is improved as the number of microphones is increased (see
Fig. 6). However, the separation performances of the proposed
MSICA which are improvements from the initial values using dif-
ferent γ are not very different in all microphones. We can conclude
that the proposed MSICA does not depend on the initial value in
the TDICA part and we can achieve a superior separation perfor-
mance by using the information from many microphones.

5. CONCLUSION

In this paper, we proposed a MSICA, by setting the number of
microphones to be larger than that of sources to achieve an im-
proved separation performance. In the FDICA part in the simple
extension of MSICA, the use of additional microphones led to al-
ternative problems: the solution is likely to be trapped within a
trivial solution and the permutation problem in FDICA becomes
very complicated. In order to solve these problems, we proposed a
new extended MSICA using subarray processing, where the num-
ber of microphones and that of sources are set to be the same in ev-
ery subarray. The experimental results obtained under real acoustic
environmental conditions reveal that the separation performance of
the proposed MSICA is improved as the number of microphones
is increased.
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