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ABSTRACT

This paper addresses the blind separation of convolutive and tem-
porally correlated speech mixtures, through the use of a multichan-
nel blind deconvolution (MBD) method. In the proposed method
(NGA-LP) spatio-temporal separation is achieved by entropy max-
imization using the natural gradient algorithm (NGA), while a tem-
poral prewhitening stage, based on linear prediction (LP), pre-
serves the original spectral characteristics of each source contri-
bution. It is further shown that a parameterized optimal nonlinear-
ity derived from the generalized Gaussian density (GGD) model,
increases the overall separation performance. Experiments with
convolutive mixtures illustrate the merits of the proposed method.

1. INTRODUCTION

This paper concentrates on the problem of blind signal separa-
tion (BSS), in the general scenario where any m observed signals
x(t) = [x1(t), . . . , xm(t)]T ∈ IRm, are considered to be linear
and convolutive mixtures of n unknown, yet statistically indepen-
dent (at each time instant) sources s(t) = [s1(t), . . . , sn(t)]T

∈ IRn. This is often the case in typical acoustic environments,
where each microphone (sensor) not only captures the direct con-
tributions from each sound source, but also several reflected copies
of the original signals at totally different propagation delays. In
this context, the signal observed at the output of the ith sensor is
given by:

xi(t) =

nX
j=1

l−1X
k=0

hij(k) sj(t − k), i = 1, 2, . . . , m. (1)

with t the discrete-time index, [hij(k)] the room impulse response
characterizing the path between the jth source and the ith sensor
and (l−1) the order of the FIR filters that model the room acoustic
effects. Substituting for the acoustic transfer function Hij(z), the
BSS model in the z-domain reads:

Xi(z) =

nX
j=1

Hij(z) Sj(z), i = 1, 2, . . . , m. (2)

where the convolution operation in (1) reduces to a simple multi-
plication. The goal of BSS consists of recovering the independent
sources from the recorded mixtures without making use of any
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a priori knowledge. In acoustic separation tasks, resorting to fre-
quency or z-domain is computationally faster than working in time
domain. Exploiting this fact, various authors have proposed speech
separation techniques, which solely operate in the discrete Fourier
domain [11]–[14]. Most tend to perform well even in highly rever-
berant conditions, nonetheless they all suffer from scaling and per-
mutation indeterminacies. Scaling problems arise due to variations
in scaling among different frequency bands, whilst permutation
disparities appear as misaligned re-orderings between neighbour-
ing bins. To alleviate these effects, a number of method depen-
dent rules have been reported [11, 12] but a rather general solution
is still awaited. MBD methods have also been widely applied in
the area of convolutive BSS, operating both in time [15, 16] and
the frequency domain [6]–[9]. A typical assumption made in this
case — apart from the spatial independence of the sources — is
that each source is also an i.i.d. (independent and identically dis-
tributed) sequence. In general, the objective of MBD is fulfilled,
provided that the recovered estimates are permuted and arbitrarily
filtered versions of the sources. This however, results in the out-
put estimates having rather flat spectral characteristics due to the
temporal constraints imposed.

The question raised in this paper is whether it is possible to
resort to MBD, while at the same time retain the original spectral
characteristics in the recovered sources. We propose a BSS method
based on MBD and show that it is particularly suited for spatially
independent, yet temporally correlated sources. Due to the en-
tropy maximization criterion [2], the efficacy of the optimization
process is closely related to the nonlinearity used to model the es-
timated sources and a mismatch is unavoidable, especially when
modelling under the assumption of a fixed distribution shape. To
cope with this problem, we introduce a new modelling parameter
concerning the shape of the source distributions and aim to im-
prove performance by estimating its optimal value. The validity
of the suggested approach is verified through experimental results
and performance comparisons.

2. MBD IN FREQUENCY DOMAIN USING THE
NATURAL GRADIENT

In [6], Lambert proposed a natural extension of the scalar matrix
algebra to the FIR polynomial matrix algebra. It was shown that
any FIR filter mixing matrix can be transformed into an FIR poly-
nomial matrix by performing a Fourier transform on its elements.
For a j-source and i-sensor system configuration, the mixing ma-
trix H(z)∈C

m×�×n can be defined as an FIR polynomial matrix,
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with its elements being complex valued FIR polynomials given by:

Hij(z) =

kX
�=0

hijz
−� (3)

and with the indices, i = [1, 2, . . . , m], j = [1, 2, . . . , n] and
� = [0, 1, . . . , l − 1], representing the observations, sources and
each filter coefficient, respectively. Note the term FIR polynomial
used here to denote either the z-domain or the discrete Fourier do-
main. Exploiting the isomorphism between scalar block-Toeplitz
and FIR matrices (See [6] for proof), it was realized that the nat-
ural gradient algorithm (NGA) of [1], could be easily extended to
employ FIR polynomials in the frequency domain [7]–[9]. Based
on the entropy maximization (mutual information minimization)
approach derived in [2] and combined with the FIR polynomial
matrix algebra, the natural gradient learning rule may be shown to
accept the following form:

Wk+1 = Wk + µ
h
I − FFT [ϕ(u)] uH

i
Wk (4)

where (·)H is the Hermitian operator, µ is the step size and W
defines the separating FIR polynomial matrix expressed in the fre-
quency domain. In addition, the identity (unit) FIR polynomial
matrix I is given by:

I =

»
1̄ 0̄
0̄ 1̄

–
(5)

where 1̄ and 0̄ represent a sequence of all ones and all zeros, re-
spectively, while the vector FFT [ϕ(u)] denotes the frequency do-
main representation of the nonlinear monotonic activation func-
tion ϕ(u) = [ϕ1(u1), . . . , ϕm(um)]T which in turn operates in
the time domain and is equal to:

ϕi(ui) = −
∂pui

(ui)

∂ui

pui(ui)
(6)

where pui(ui) defines the pdf of each source estimate ui for all
i = 1, 2, . . . , m. The separating matrix W(z) yields the outputs:

u(z) = W(z) x(z) (7)

with the column vectors of the z–transforms of the estimates and
mixtures written as:

u(z) = [U1(z), . . . , Um(z)]T (8)

x(z) = [X1(z), . . . , Xm(z)]T (9)

While the update equation in (4) benefits from the computational
speed of adapting the separating (unmixing) filters in the frequency
domain, it also manages to avoid any permutation indetermina-
cies, since the optimization criterion operates exclusively in time
domain. However, an analysis of the equilibrium points of (4)
and after substituting FFT [ϕ(u)] with the complex vector quan-
tity Φ(U) = [Φ1(U1), . . . ,Φm(Um)]T , reveals that in order for
the stationarity conditions of the on-diagonal terms to hold, the
following must be satisfied:

E
ˆ
Φi(Ui)Ui

∗˜
= 1̄ (10)

where E [ · ] represents the expectation operator and (·)∗ denotes
complex conjugation, clearly proving that the NGA imposes a cer-
tain scaling constraint on the spectra of the source estimates. This

becomes even more tangible if we rewrite (10) in the time domain
as:

t−1X
κ=0

E
ˆ
ϕi(ui(κ))ui(t − κ)

˜
= δt (11)

for some non-zero time lag κ with δt the Kronecker delta function,
equal to 1 for t = 0 and 0 otherwise.

3. NATURAL GRADIENT ALGORITHM BASED ON
LINEAR PREDICTION ANALYSIS

The temporal constraints imposed within each source, are trans-
lated into unknown linear filtering operations, which in turn pro-
duce signal estimates with equalized (white) spectra. The side-
effect of whitening — realized as the flattening of the signal power
spectrum, with energy at higher frequency bands being increased
at the expense of energy in lower frequencies — is clearly unde-
sired in speech separation applications. To remedy this situation,
[15] operated on the assumption that the spectral characteristics
of each source are dominant over the rest in each mixture and
used a cascaded system of separating and linear prediction (LP)
filters to preserve each source colour at the output. In [5], we ex-
ploited the temporal model of speech and suggested an alternative
system configuration also based on LP, without availing ourselves
of the above assumption. In this modification, the spatial separa-
tion filters are adapted using temporally independent LP residuals,
while the contribution of each source is obtained by applying the
estimated filters to the original mixtures without any modification.
Hence, we may define the diagonal FIR polynomial matrix A(z):

A(z) = diag
ˆ
A1(z), . . . , Am(z)

˜
(12)

with each diagonal entry of the matrix simply consisting of the pth-
order linear prediction error (LPE) filters with transfer functions
subsequently given by:

Ai(z) = 1 −
pX

k=1

αi(k)z−k (13)

where each vector [αi(k)] represents the linear prediction coeffi-
cients and is defined for 1 ≤ k ≤ p and for all i = 1, 2, . . . , m.
From the observed mixtures at the sensor output, the acquired in-
novation processes, i.e., the prediction error signals (residuals) in
the z-domain can be written as:

Vi(z) =

mX
i=1

Ai(z) Xi(z), i = 1, 2, . . . , m (14)

For every ith observation, the coefficients αi(k) in (13) may be
typically estimated in the time domain by minimizing the mean
squared prediction error of the mixture xi(t) with respect to its
past samples xi(t − k), which yields the set of Yule-Walker auto-
correlation equations [10]:

E
»“

xi(t) −
pX

k=1

αi(k) xi(t − k)
”

xi(t − �)

–
= 0 (15)

for � = 1, 2, . . . , p and i = 1, 2, . . . , m, from which the optimal
prediction coefficients can be obtained via the Levinson-Durbin
recursive method. The estimated innovations can thus be used to
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adapt the coefficients of the spatial separation FIR polynomial ma-
trix W(z) according to:

Wk+1 = Wk + µ
h
I − FFT [ϕ(u)] uH

i
Wk (16)

with the spatially and temporally independent outputs in the fre-
quency domain written as:

u(z) = [U1(z), . . . , Um(z)]T = W(z) v(z) (17)

Applying the separating matrix in the original mixtures, produces
the spatially separated yet temporally correlated source estimates:

bs(z) =
ˆ bS1(z), . . . , bSm(z)

˜T
= W(z) x(z) (18)

Experiments carried out in [5] demonstrate the advantages of the
NGA-LP. The removal of inherent speech short-time correlations,
was shown to greatly benefit the proposed method, which reduces
to a spatial separation process resulting in increased stability, sepa-
ration performance and speed of convergence. More significantly,
the original contribution of each source signal is extracted with its
unique power spectral characteristics fully preserved.

4. OPTIMAL NONLINEARITY BASED ON THE GGD

The separation performance and convergence properties of the ap-
proach at hand, highly depend upon the relation of the nonlinear
function used in the model and the pdf of the sources to be recov-
ered. Although a certain flexibility can be afforded, an ill matched
activation function can result in a model mismatch and further-
more in a non converging solution. In [5], we stipulated that the
innovations retain enough information to preserve the optimiza-
tion criterion and hence the spatial separation filters are capable of
separating the coloured observations. However, this is often not
the case. In NGA-LP the spatial separation filters are adaptively
estimated using the temporally independent versions of the output
source estimates. In effect, the assumption of a Laplacian distri-
bution model is merely an approximation of the actual density of
the LP residuals and therefore the nonlinearity ϕ(u) = sign(u)
cannot be regarded as being optimal. A strong corroboration point
for this argument comes also from [3], where a similar observa-
tion has been made. Since, the innovation processes have a sparse
distribution, in general, it is possible to sufficiently approximate
their distribution by employing the generalized Gaussian density
(GGD) model. For a zero-mean and unit variance speech signal x
the GGD is defined as:

px(x) =
β

2αΓ(1/β)
e−(|x|/α)β

(19)

where α and β are positive real parameters and Γ(·) denotes the
Gamma function defined as Γ(β) =

R ∞
0

xβ−1e−xdx. Parameter
α is a generalized measure of the variance of the distribution and is
referred to as the dispersion or scale parameter, while β describes
the exponential rate of decay and defines the shape of the distribu-
tion [4]. As special cases of the GGD, a Laplacian distribution is
defined for β = 1, a standard Gaussian distribution for β = 2 and
a Gamma distribution for β = 0.5 as shown in Fig. 1. Substitut-
ing (19) into (6) we can deduce the family of nonlinear activation
functions based on the GGD:

ϕi(ui) = |ui|(β−1) sign(ui) (20)
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Fig. 1. Pdf of the generalized Gaussian density (GGD) model for different
values of the shape parameter β = 0.5, 1, 2. The corresponding nonlinear
functions ϕi for each distribution are also superimposed in the graph.

which by taking into account that sign(ui) = ui/|ui|, may be
further reduced to:

ϕi(ui) =
ui

|ui|(2−β)
, 0 < β < 1 (21)

defined for ui �= 0 with ϕi(ui) acting elementwise on the source
estimate components ui for all i = 1, 2, . . . , m. Note here that
(21) depends solely on the shape parameter of each source distri-
bution.

5. EXPERIMENTAL RESULTS

In this section an empirical approach is undertaken to experimen-
tally define an optimal value for the shape parameter β of the gen-
eralized nonlinearity used in the NGA-LP. The data set used, em-
ploys two female speech signals and the corresponding algorithm
parameters are summarized in Table 1. Convolutive mixtures are
generated from a non-minimum phase mixing system consisting
of 5-tap filters. The separation performance of the algorithm is
measured using the interference-to-signal (ISR) ratio:

ISR = 10 log10

‚‚Gij

‚‚2‚‚Gii

‚‚2 , i �= j (22)

where the global cascade system is equal to G(z) = W(z)H(z).
We limit our search for an optimal value for β in the range [0, 2].
To investigate the algorithm performance in this range, the separa-

Length of speech signals 5 seconds
Sampling frequency 8 kHz
Blocksize M = 128 points
Order of LP filters p = 9
Separating filters W = 2×256×2
Step size µ = 0.001
Number of iterations N = 30

Table 1. Algorithm parameters.
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Fig. 2. Plot of separation efficiency versus the evolution of shape param-
eter β ∈ [0, 2] for GGD-based nonlinearity, with point × at β = 1.

tion efficiency expressed as the normalized ISR is plotted against
β. As Fig. 2 reveals, there exists a single optimal value βopt = 0.7
for the parameter at hand, for which BSS performance is maxi-
mized. In hindsight the result is substantiated, due to the fact that
the pdf of an innovation process is known to closely resemble a
Gamma distribution. Furthermore, a number of experiments with
convolutive mixtures of speech carried out in [13], also point to
the strong validity of these findings. For the estimated value βopt

of the Gaussian exponent, (21) yields the corresponding optimal
nonlinear function to be used in the NGA-LP. The performance of
the proposed algorithm when compared against the NGA and the
NGA-LP, with both operating under the standard threshold non-
linearity, is depicted in Fig. 3. NGA-LP clearly outperforms the
NGA (mostly by about 5 dB), while when combined with the op-
timal nonlinearity, it exhibits an improvement of about 15 dB. It
is also apparent from Fig. 2 that the normalized ISR at β = 1
(the operating point for the unoptimized NGA-LP method) is only
about 0.6 of the optimized (βopt = 0.7) NGA-LP efficiency, which
is essentially reflected in the ISR differences shown in Fig. 3.

6. CONCLUSIONS

We have employed the NGA-LP BSS method based on MBD,
which combines the natural gradient algorithm and the entropy
maximization principle, to separate convolutive mixtures of speech
in the frequency domain. Endorsing a temporal prewhitening stage
ensures that there are no spectral constraints being imposed on the
recovered source estimates. We have also derived an optimal non-
linear function, based on the GGD and have shown its ability to
accurately model the underlying distributions of the source inno-
vation processes in the proposed modification. Future work will
focus on investigating techniques, towards a continuously adaptive
estimate of the generalized Gaussian exponent parameter.
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