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ABSTRACT 

Missing Data Techniques (MDT) have shown to be an effective 
method for curing the performance degradation of HMM-based 
speech recognition systems operating on noisy signals. However, 
a major drawback of the approach is that MDT requires that the 
acoustic model be expressed as a mixture of diagonal Gaussians 
in the log-spectral domain, whereas a higher accuracy can be 
obtained with Gaussian mixtures in the cepstral domain. This 
paper describes a recognizer based on the recently described 
cepstral-domain MDT approach using missing data masks 
computed from the noisy signal. It exploits a novel decision 
criterion that integrates harmonicity with signal-to-noise ratio 
and which makes minimal assumptions on the noise. The system 
is shown to exhibit a recognition accuracy that is comparable to 
the ETSI Advanced Front-End reference.

1. INTRODUCTION 

Additive noise leads to a deterioration of speech recognition 
accuracy due to a mismatch between the noisy feature vector 
statistics and the speech models. Missing Data Techniques 
(MDT) have shown to be effective in reducing this mismatch for 
both bandlimited and wideband noise. In the MDT approach, 
features are labeled as either missing or reliable. The latter are 
considered to be free of noise and are used as such in the 
evaluation of an acoustic model trained on clean speech. Missing 
features on the other hand are either removed (marginalisation) 
or their value is inferred from the reliable features using the 
HMM state distribution as a prior (data imputation), see [1]. In 
this paper, the data imputation method will be applied. 

A major drawback of the missing data approach is that it 
generally requires that the acoustic models are expressed in the 
(log-)spectral domain. However, speech recognition systems 
achieve a higher accuracy when the acoustic model is expressed 
in the cepstral domain and if velocity and acceleration features 
are used. Alternatively, a linear transform of the log-spectra, 
such as an LDA, can replace the cepstral representation. Re-
cently, it was shown that Missing Data Techniques can be 
applied in the cepstral domain or linear transform domain as well 
[2], which solves the accuracy and robustness loss associated 
with the sub-optimal HMM emission density representation in 
the spectral domain. 

Whereas [2] described the approach to acoustic modeling 
using MDT in the cepstral domain, the Missing Data Detector 
(MDD) was still idealized by using “oracle” or a priori masks 
derived from knowledge of the clean speech and the noise. In 

this paper, the noise masks are derived from the noisy signal 
based on weak assumptions about the noise. This paper proves 
that MDT systems can be competitive to carefully designed 
front-ends incorporating noise suppression techniques. The 
MDD presented in this paper assumes that (voiced) speech is the 
dominant harmonic signal component and hence the signal is 
decomposed into harmonically related plus random components. 
Though this “harmonicity” has been exploited before to build 
MDD’s [3], the present approach integrates harmonicity and 
signal-to-noise ratio (SNR) through signal processing. 

This paper is organized as follows. Section 2 briefly restates 
the missing data approach in the cepstral domain. The algorithm 
to decompose the signal into a harmonic and a random compo-
nent is explained in section 3, while section 4 describes how this 
decomposition is applied to build missing data masks. Section 5 
describes a method for additional noise reduction. The experi-
ments on the AURORA-2 database are presented in section 6. 
Finally, section 7 concludes and describes how the present work 
will be carried forward. 

2. MISSING DATA TECHNIQUES IN THE 
CEPSTRAL DOMAIN 

In this paper, we focus on robustness to additive noise, while 
unknown filtering will not be considered. Although MDT can be 
applied to static and dynamic cepstra jointly [2], for the sake of 
computational simplicity, MDT is applied to static cepstra only. 
It was shown in [2] that MDT compensation of the velocity and 
acceleration features leads to only a moderate accuracy improve-
ment. 

The speech recognizer is assumed to have a mainstream 
HMM-based architecture with Gaussian mixture acoustic 
models. In the front-end, a low-resolution MEL spectral 
representation is computed by a filter bank through windowing, 
framing, FFT and filter bank integration. At frame t, the output 
of the filter bank with center frequency f will be denoted by 
|Yt(f)|, |St(f)| and |Nt(f)| for the noisy speech, clean speech and 
noise respectively. The log-MEL-spectral noisy features yt are 
then obtained by stacking log(|Yt(f)|) for all filter banks in a 
vector, and likewise for st and nt. In missing data theory, it is 
now observed that  

( )max ,t t t≈y s n   (1) 

In [2] it was shown that the evaluation of the i-th Gaussian 
mixture component in the HMM emission density model of state 
q should be replaced by the non-negative least squares problem 
in the variable x: 
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where C is the (truncated) DCT transform matrix, µiq and � iq are 
the state cepstral mean and diagonal covariance of Cst and µa,iq

and � a,iq, are the mean and diagonal covariance of st. The sub-
script u denotes those matrix columns corresponding to the 
unreliable components of yt, and λ is a non-critical regulariza-
tion constant. The solution x is subtracted from the unreliable 
components of yt to find the maximum likelihood clean speech 
estimate, which is optimal for Gaussian i of state q.  

3. HARMONIC DECOMPOSITION 

In order to determine which signal components are caused by 
noise and which are due to speech, the property that speech 
contains voiced segments composed of harmonically related 
components with “slowly” varying pitch is used. The underlying 
idea is that the harmonic part will be dominated by the speech 
rather than the noise. During voiceless speech, this approach 
may lead to poor decisions. 

To decompose the signal into its harmonically related compo-
nents, a pitch estimate is first computed. To this end a subhar-
monic summation method inspired by [4] is augmented with a 
dynamic programming algorithm to suppress doubling and 
halving errors. The signal is subsequently framed in overlapping 
segments with a length of two pitch periods and a single period 
of frame shift. Let t denote the pitch period index, then the noisy 
speech signal is written as: 

( ) ( ) ( )   with   0t t t ty n h n r n n N= + ≤ <   

where Nt is the estimate of the double pitch period, as given by 
the closest frame of the subharmonic pitch estimator and rt(n) is 
the random signal component. The harmonic part is modeled as: 

( ) ( ) ( ), 0, , 0,
0 1

1 cos 2 s 2
t tK K

t
t k t t k t t

k kt

c n
h n a f kn b in f kn

N
π π

= =

⎛ ⎞⎡ ⎤
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⎣ ⎦⎝ ⎠
∑ ∑   (2) 

where f0,t is the pitch estimate for segment t and the number of 
harmonics Kt is the largest integer such that f0,tKt<0.5. The 
inclusion of the linear modulation function (1+ctn/Nt) accounts 
for the change in speech amplitude that is observed over a length 
of Nt samples. This modulation parameter together with the pitch 
frequency and the harmonic amplitude parameters ak,t and bk,t are 
estimated as follows. Define the matrices C and S with entries 

( )0,cos 2nk tC f knπ=  and ( )0,s 2nk tS in f knπ=  with 1 tk K≤ ≤

and 0 tn N≤ < . Furthermore, let  
�
 denote matrix transpose,  ht = 

[ht(0), ... , ht(Nt-1)]
�
, at=[ a0,t , a1,t , ... , b1,t , ...]

�
, and let et be a 

column vector of Nt ones. Finally, with At the diagonal matrix 

( )( )1,1 ,1 2 , , 1 1t t t t t t tdiag c N c N N c N+ + + −…  and Et = 

[ ]t t t tA e C S , the harmonic signal component is expressed as 

t t t=h E a . The parameters at, f0,t and ct will now be estimated in 

the least squares sense by minimizing (yt-Etat) 
�
(yt-Etat). For each 

choice of the scalar parameters f0,t and ct, the matrix Et is fixed 
and the estimation of at is a linear least squares problem with 
solution ˆ

t t t
− ′= 1
ta R Q y  where t t t=Q R E is the QR decomposi-

tion of Et (with Rt square and Qt is homomorphous to Et). 

Substitution of ât in the error function yields the simplified cost 

( ) ( ) ( )0, 0, 0,, , ,t t t t t tL f c f c f c′= d d  with ( )0, ,t t t tf c ⊥=d P y  where 

t t t
⊥ ′= −P I Q Q is the projection matrix onto the null-space of Et. 

The cost can be minimized iteratively with updates of the 

parameter vector [f0,t ct] �  equal to ( ) 12L L
−

− ∇ ∇  where the gradi-

ent is found as 2L ′∇ = ∇d d and the Hessian is computed using 

the Levenberg-Marquardt approximation: 
2 2 (1 ,1 )L diag ε ε ′∇ ≈ + + ∇ ∇d d  with 0 1ε≤ � . 

With some algebra, the partial derivatives in ∇d are found to be 

( )1

0, 0, 0,

ˆt t
t t t t t t

t t tf f f
− ⊥ ⊥′∂ ∂ ∂′= − −

∂ ∂ ∂
d E E

Q R P y P a   

and likewise for the partial derivative with respect to ct. The 
initial pitch value is set to the subharmonic summation pitch 
estimate and the initial value for ct is zero. In our experiments, 
no examples of divergence have been observed while 2 to 3 
iterations suffice. Because the harmonic summation method 
estimates the pitch from a low-pass spectrum, the recursive 
updates are required to find a good spectral fit for the higher 
harmonics. Together with the modulation model, this constitutes 
a refinement over the decomposition method presented in [5]. 

For each segment t, the estimated parameters are now 
plugged into (2), which is evaluated over the central pitch period 
of the segment. Subsequently, the harmonic signal part is formed 
by concatenation of the central segments. The random part is the 
difference between the orginal and the harmonic signal. The 
filter bank outputs computed on these harmonic and random 
components will be denoted by |Ht(f)| and |Rt(f)| respectively. 

4. MISSING DATA DETECTOR 

A crucial component of a speech recognizer based on missing 
data techniques is the missing data detector (MDD). The ideal 
MDD decision criterion labels the output of the filter bank at 
frequency f and frame t as missing if: 

( ) ( )2 2

t tS f N f<   (3) 

Since the phase relation between speech and noise is unknown, 
the expected value of both sides of (3) is taken. By using the 
statistical independence of speech and noise, one obtains: 

( ){ } ( ){ } ( ){ } ( ){ }2 2 2 2
2 t t t tE S f E S f E N f E Y f< + =

Neglecting the correlation between H and R, this becomes: 

( ){ } ( ){ } ( ){ }2 2 2
2 t t tE S f E H f E R f< +

However, only one observation per frame is available, such that 
the expected values are estimated by their instantaneous values. 
The clean speech spectrum is estimated as 

( ) ( ) ( )2 2
,t t tS f f q H fγ=  (4) 

for some time, frequency and state (or Gaussian)-dependent gain 
�

t(f,q). Hence the MDD criterion becomes: 

( )( ) ( ) ( )2 2
2 , 1t t tf q H f R fγ − <   (5) 

Although a gain estimate �  = 1 yields usable “harmonicity” 
masks, a better recognition accuracy was observed if �  is related 
to a signal-to-noise-derived estimate as follows (for brevity, the 
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dependency on t, f and q is dropped in the sequel)  
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where superscript (S) and (N) denote the variable computed on 
clean speech or noise only. Although prior knowledge about the 
state can now be introduced in this estimator, the following 
state-independent approximations were selected: 

• ( ) 1Sγ = , which is realistic for voiced speech 

• ( ) ( ) minN N
t t s

t L s t L
H R Rα

− ≤ ≤ +
≈ ≈  with �  > 0 

The approximation of |Ht
(N)| by |Rt

(N)| can easily be understood 
from the harmonic decomposition method. To this end, first 
assume that f0,t is fixed and that ct = 0, i.e. only the amplitude 
parameters are estimated. Due to the choice of Nt as twice the 
period, the matrix Et becomes orthogonal and at,k (bt,k) are found 
as the real (imaginary) part of the even-numbered lines of the 
IDFT spectrum computed on Nt data points. The odd-numbered 
spectral lines form the remainder or random signal part. Hence, 

for random (non-harmonic) noise, |H| and |R| are obtained by 
MEL-integration of interleaved subsampling of the noise spec-
trum. With f0,t and ct estimated in the least squares sense, the 
energy in the harmonic part will increase slightly at the expense 
of the random component. Hence, |Rt

(N)| will underestimate 
|Ht

(N)|. Finally, |Rt
(N)| is estimated from the minimum of |R| over a 

window of 2L+1 frames (here L = 10).  
From (5) it is clear that harmonicity and SNR evidence are 

integrated in a global decision. Like in [3], balancing MDD 
misclassification errors of the 1st and 2nd kind is achieved by 
multiplying the right-hand-side of equation (5) by a “margin” 
(here –10 dB). This threshold is raised to 0 dB for silence states 
as a rudimentary implementation of state-dependent � -estimates. 
Figure 1 illustrates the superiority of the integrated masks over 
the harmonicity masks when their margins are chosen to yield 
equal ratios of errors of the 1st and 2nd kind. 

5. NOISE REDUCTION 

Especially when the speech only slightly dominates the noise, 
the max-approximation (1) involves a non-negligible error in the 
log-spectral domain. When speech and noise are equal in 
amplitude, the |Y| will on average be 3 dB greater than |S|. An 
option would be to use (4) as an estimate of the clean speech. 
However, the approximations motivated above also imply that 

1γ ≤ , so |S| would be underestimated. Instead, the ratio of the 
left and right hand side of (5) (the “decision margin” of the 
MDD) is used to define a gain function gt(f) that is multiplied 
with |Y|. To avoid overcompensation, gt(f) is soft-limited between 
–6 dB and 0 dB. Hence, areas in the time-frequency plane that 
are prominently labeled as speech are unaffected, the noisy parts 
are suppressed by 6 dB and the desired 3 dB suppression are 
obtained when speech and noise have a comparable magnitude. 
A major difference with spectral subtraction, where a similar 
gain function is used, is that in this approach, we do not attempt 
to recover the clean speech in case it is masked by the noise. 

This noise reduction step is also required to enhance the 
velocity and acceleration features, such that a fair comparison 
relative to the next section’s baseline can be obtained, in which 
compensates the dynamic parameters as well. 

Figure 1: Oracle, harmonicity and integrated mask for train 
noise at 10dB SNR.
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Figure 2: Comparison chart for AURORA-2, Set A, Noise 1.
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Figure 3: Comparison chart for AURORA-2, Set A, Noise 2.
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6. EXPERIMENTS 

The above approach is evaluated on the AURORA-2 continuous 
digit recognition task using the complex back-end. The evalua-
tion is limited to test set A, since channel mismatch (test set C) is 
beyond the scope of this paper and also knowledge about the 
noise is not exploited during the training process (test set B). 
This configuration consists of an HMM Gaussian mixture 
architecture with 16 states per digit and 20 Gaussians per state. 
The optional inter-word silence is modeled by 1 or 3 states with 
36 Gaussians per state, while leading and trailing silence have 3 
states. The total number of Gaussians is 3628. The front-end of 
the MDT system is the ETSI STQ WI-007 standard, a textbook 
MFCC feature extraction method without cepstral mean 
normalization. Velocity and acceleration features are computed 
using the HTK default regression formulae. 

The accuracy results are presented in figure 2 through 5 for 
the four noise types of the test set. The curve labeled “full AFE” 
is obtained using a reference system composed of a back-end of 
the same complexity as above and the “Advanced Front-End” 
(AFE) as described by ETSI STQ WI-008 standard [6], where 
speech enhancement is performed by a two-stage Wiener 
filtering and subsequent waveform processing. Since the present 
focus does not include compensation for unknown filtering, the 
“Blind Equalization” was removed from the AFE baseline and 
the system was configured not to use the voice activation 
detection. Because there is no filtering mismatch between test 
and training,  the accuracy impact of this modification is minor, 
as is witnessed by the curves labeled “AFE no cms”. The curve 
labeled “oracle MDT” uses (3) as a decision criterion and shows 
the further potential of the cepstral MDT method. The results of 
the system described above are given as “cepstral MDT”. These 
results compare favorably to the “AFE no cms” reference. The 
worst results are obtained for the exhibition noise, which 
contains whistling in many files. This noise violates the 
assumption that the harmonic signal is due to speech. Advanced 
auditory scene analysis or even simple pitch constraints could 
alliviate the problem. Finally, a reference system using the ETSI 
WI-007 front-end and clean speech model but without MDT 
compensation is shown as “clean baseline”. 

7. CONCLUSIONS 

A speech recognizer based on Missing Data Techniques in the 
cepstral domain was described. Unlike in previous work, the 
missing data masks were computed from the noisy signal based 
on an original method involving harmonic decomposition. 
Harmonic components were assumed to originate from the 
speech only. No long-term noise averages were used. The experi-
mental evidence shows that cepstral MDT systems can achieve a 
degree of robustness to additive noise that is comparable to the 
ETSI Advanced Front-End. 

Further work will include: HMM-state-dependent estimates 
of γ, soft decisions or fuzzy masks in the cepstral MDT approach 
and compensation for unknown filtering.  
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Figure 4: comparison chart for AURORA-2, Set A, Noise 3.
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