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ABSTRACT 

This report describes a robust speech recognition technique which 

normalizes cepstral gains in order to remove effects of additive 

noise. We assume that the effects can be expressed by an 

approximate model which consists of gain and DC components in 

log-spectrum. Accordingly, we propose cepstral gain 

normalization (CGN) which normalizes the gains by means of 

calculating maximum and minimum values of cepstral 

coefficients in speech frames. The proposed method can extract 

noise robust features without a prior knowledge and 

environmental adaptation because it is applied to both training 

and testing data. We have evaluated recognition performance 

under noisy environments using Noisex-92 database and a 100 

Japanese city names task. The CGN provides improvements of 

recognition accuracy at various SNRs comparing with 

combinations of conventional methods. 

1. INTRODUCTION 

In recent years, speech recognition technologies have 

considerably progressed and achieved high accuracy in clean 

environments. However, since the recognition performance 

declines when speech is corrupted by noise, an improvement of 

noise robust techniques is required. Noise robustness approaches 

can be classified into several categories, i.e., feature or model 

adaptation[1,2] noise robust feature extraction[3] and noise 

suppression[4,5]. In the noise suppression, spectral subtraction 

(SS)[4] is effective for background noise suppression and widely 

used in speech recognition, speech enhancement and speaker 

verification. This method estimates noise spectra from non-speech 

intervals and subtracts them from noisy speech spectra. Also an 

advanced spectral subtraction method is proposed[6]. 

However, SS has two problems in case of utilizing in speech 

recognition. In the first, speech/non-speech separation is a 

non-continuous and non-linear operation in frame time. It causes 

distortion of original speech and recognition performance 

declines under high SNR environments. In the second, the 

efficacy of the noise subtraction weakens in log-spectrum domain. 

It is known that log-spectrum is very sensitive to noise since 

spectral valleys are more affected by noise than spectral peaks. 

When residual noise spectrum exists after SS processing, the 

noise spectrum is considerably enhanced in non-speech and pause 

intervals. Root-cepstrum analysis[7] has been proposed in order 

to suppress the sensibility of noise, however, recognition 

performance falls for clean speech or speech-like noise. 

In this report, we consider speech log-spectrum affected by the 

additive noise and propose an approximate model. The model 

assumes that log-spectrum of the additive noise is expressed by 

changes of gain and DC components. This approximate model can 

be applied to cepstrum domain. And then we propose cepstral 

gain normalization (CGN) which normalizes cepstral gains by 

means of calculating maximum and minimum values of cepstral 

coefficients in speech frames. The CGN does not distort original 

speech because of simple linear operations. Moreover, it has an 

advantage that a priori knowledge and adaptation are not required 

under any environments on account of executing same processing 

in both training and testing data. 

2. APPROXIMATE MODEL IN ADDITIVE NOISE 

When speech is corrupted by unknown additive stationary noise 

and unknown multiplicative distortion, we describe a model of 

noisy environment given by the following equation: 

)()(),(),( ωωωω AHnSnX +=                     (1) 

where X(n, ) is a power spectrum of noisy speech at frequency 

and frame time n, S(n, ) is a power spectrum of clean speech, 

H( ) is the multiplicative distortion and A( ) is a power spectrum 

of the additive noise. The additive noise is assumed to be 

uncorrelated with speech signal. We express E(n, )=S(n, )H( )

to simplify. Log-transformation of Eq. 1 can be expressed as 

))(),(log(),(log ωωω AnEnX += .                (2) 

Figure 1 shows the second channels of mel-scale filterbank in 

power and log spectrum domain respectively, where the value of 

A( ) is set to 0.002. The noise spectrum A( ) is artificially added 

to the spectrum E(n, ) in power spectrum domain. The speech 

sample is extracted from utterance ‘hachinohe’, analyzed by 

512-points short-time Fourier transforms and compressed by 40 

mel-scaled filterbanks. The waveform of log-spectra in noisy 

speech log(E(n, )+A( )) decreases in gain (distance between 

maximum and minimum values) and increases in DC level, 

comparing with that of clean speech. We take notice of the 

following points in order to formulate these changes. 

1. The power spectrum of clean speech E(n, ) has a minimum 

value in each frequency. The value must be non-zero. 

2. The power spectrum of additive noise A( )  is much larger than 

the minimum values min(E(n, )), that is A( )>>min(E(n, )).

Ideally, min(E(n, )) is a zero value in clean environment. 

However, the zero value is converted to infinity in log-spectrum 

domain. It prevents speech recognition training or testing on 

computer. This constraint is inevitable and the minimum value 

necessarily becomes an important factor determining the gain in 

the waveform of log-spectra. 

The change of gains G( ) can be expressed as 
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where GN( ) and GC( ) are gain factors in noisy and clean 

environments respectively. The gain of clean speech is mostly 

determined by the minimum value min(E(n, )). On the other hand, 

the gain of noisy speech is determined by the noise value A( ) and 

becomes much smaller than that of clean speech on account of 

A( )>>min(E(n, )).

The DC offsets of clean and noisy speech can be expressed as 
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where DN( ) and DC( ) are DC offsets of noisy and clean speech 

respectively and L is the number of speech frames. Consequently, 

by adjusting the gains and DC offsets, the log-spectrum of noisy 

speech can be expressed as the following approximate equation: 

)()](),()[log(),(log ωωωωω NC DDnEGnX +−≈ .   (8) 

Furthermore, 

)(),(log)(),(log ωωωω BnEGnX +≈          (9) 

where B( ) is a DC bias given by 

)()()()( ωωωω CN DGDB −= .                       (10) 

3. EFFECTIVENESS OF APPROXIMATE MODEL 

The effects of additive noise are expressed by changes of gain and 

DC components in log-spectrum domain. In this section, we 

discuss effectiveness of the approximate model. Equation (9) can 

be generalized as 

βγ +≈+ )(log))(log( xfAxf .                  (11) 

Exponential-transformation of Eq. (11) can be described as 

γβ ))(()( xfeAxf ≈+                      (12) 

where f(x)>0. The representation of Eq. (12) enlarges 

approximation errors if f(x) is a strictly increasing function. 

Figure 1: Power spectrum and log-spectrum of clean and noisy 

environments.

Figure 2: Comparison of linear and logarithm functions. 

However, a time trajectory of power spectra in speech is similar 

not to an increasing function but to a periodic function. We utilize 

a simple periodic function given by f(x)=-cos(x)+ . Model 

functions in clean and noisy environments are expressed as 

Clean: δ++−= 1)cos()( xxfC
                      (13) 

Noisy: AxxfN ++−= 1)cos()(                       (14) 

where  is a threshold assumed in clean environment and A is 

additive noise assumed in noisy environment. SNR values are 

determined by these parameters. When  is set to 0.01, a SNR 

value becomes 40dB. When A is set to 0.1, it produces noisy 

environment at SNR 20dB. According to the approximate model, 

fN(x) can be approached to fC(x) by canceling effects of  and ,

given by

γβ
1

))(()( xfexf NA

−=                         (15) 

where fA(x) is an approximate function. The values of and  are 

calculated in the same way as the previous section.  
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Figure 2 shows a comparison of three functions in linear and 

logarithm domain ( =0.0 , A=0. ). Although the distance 

between fA(x) and fC(x) enlarges at the spectral peak(x= , 3 ), it 

becomes compressed after logarithm transformation. The distance 

between logfA(x) and logfC(x) becomes much smaller than that of 

between logfN(x) and logfC(x) at the spectral valley(x=0, 2 ). In 

Eq. (15), the root function (.)1/ brings the minimum value of noise 

spectra close to that of clean spectra at the spectral valley. The 

exponent function exp(– ) can suppress errors at the spectral peak 

which is produced by the root operation. 

Focusing on logarithm transformation, the transformation of Eq. 

(15) can generate robust feature parameters which are less 

affected by noise than no robust processing at spectral valleys. 

The approximate model suppresses a trade-off that logarithm 

transformation is sensitive to small changes of values at spectral 

valleys and insensitive to large changes at spectral peaks.

4. CEPSTRAL GAIN NORMALIZAION 

When recognition training is executed in clean environment and 

recognition testing is evaluated in noisy environment, a difference 

of log-spectra between training and testing environments can be 

removed by adjusting the gain and the DC offsets. The adjusted 

log-spectrum is obtained by the following equation: 

)(),(log),(log ωωω CDnEnS −=′ .          (16) 

In the noisy environment, logS’(n, ) can be obtained by 

canceling the gain G( ) and the DC offset DN( ) according to Eq. 

(8).  The DC offset DN( ) can be calculated from an average of 

log-spectra. The gain G( ) can be eliminated  by normalizing 

both clean and noisy log-spectra gain GN( )= , GC( )= . These 

operations can be applied into cepstral parameters approximately. 

A series of procedures are summarized to the following two steps, 

which are applied to both training and testing data. 

Step : Subtract an average of cepstral coefficients. The operation 

is known as cepstral mean normalization (CMN)[5]. 
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Step2: Normalize gains by calculating the maximum and the 

minimum values of cepstral coefficients. It is called as cepstral 

gain normalization (CGN) in this report. 
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where k is quefrency in M-order cepstrum. These steps are applied 

to delta cepstrum and delta-delta cepstrum as well. CGN is similar 

to cepstral variance normalization (CVN). While CGN is based on 

the approximate model, CVN is not sufficient to clarify the effects 

of additive noise. As for additive noise, the normalization using 

cepstral gain by CGN realizes better noise robust performance. 

Figure 3: Cepstral coefficients of clean and noisy speech (2nd

MFCC).

5. TEMPORAL FILTERING 

Although we have assumed stationary additive noise in the above 

discussion, non-stationary noise should be considered under real 

environments. If the non-stationary noise produces sharp peaks in 

cepstrum, the peaks may prevent estimating an exact gain of noisy 

cepstrum. Smoothing cepstral coefficients is required to remove 

such turbulences. Therefore we use temporal filtering which is 

proposed by RASTA filtering[8] and FIR band-pass filtering[9]. 

These processing remove DC components and higher modulation 

frequency components of cepstral coefficients. The removal of 

DC components substitutes for CMN. Speech intelligibility 

mostly exists between 4Hz and 16Hz in modulation frequency. 

The band-pass filtering reduces noise components existing in the 

other frequency bands.  

Figure 3 shows the second MFCC in clean and noisy 

environments. The noisy speech is generated artificially from 

speech babble noise at SNR 10dB. In this example, it turns out 

that the combination of CGN and CepFIR (which means the FIR 

band-pass filtering) succeeds in fitting cepstral gains between 

clean and noisy speech. 

6. EXPERIMENTS 

6.1. EXPERIMENTAL CONDITIONS 

Noise robust performance has been evaluated in an isolated word 

speech recognition task. We have utilized NOISEX-92 noise 

database[10] and 100 words Japanese city names of JEIDA 

(Japanese Electronic Industry Development Association) 

database. A speech data is sampled at 11.025KHz and 16bit 

quantization. In speech analysis, MFCC features are extracted 

after pre-emphasis and Hanning windowing, and converted to 38 

dimensional feature vectors. Frame length and shift are 23.2ms 

and 11.6ms respectively. The feature vectors consist of 12 MFCC, 

12 delta MFCC, 12 delta-delta MFCC, delta log energy and 

delta-delta log energy. In training, we have created 100 
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word-level HMMs from 40 males speech data. These models have 

32 states and 1 mixture per states based on a continuous density 

function. In testing, clean speech is artificially added with noise at 

various SNRs. Recognition accuracy has been measured from 10 

speaker-independent test sets in recognition experiments. 

6.2. EXPERIMENTAL RESULTS 

We have evaluated various combinations in order to find optimum 

techniques suited with CGN. Table 1 shows average recognition 

accuracy in F-16 noise, factory noise, and speech babble noise. At 

CepFIR, we have implemented a 240-tap FIR filter which passes 

between 1Hz and 10Hz. CMN and CepFIR are computed on a 

whole speech utterance. Without CGN or CVN, CepFIR has 

pointed the best recognition performance of four methods. The 

recognition rates of CGN based methods are higher than those of 

CVN. CVN based methods distort recognition performance in 

clean environment (over SNR 30dB) comparing with usage of 

only CMN. At last, the combination of CepFIR and CGN has 

provided the highest recognition performance. 

Table 2 shows average recognition accuracy in all fifteen types 

of noisy environments in NOISEX-92. We have compared the 

combination of CepFIR and CGN with other combinations of 

conventional methods. SS parameters are set to over-estimation 

= .5 and flooring =0. . The noisy spectrum of SS is calculated 

from an average of 7 frames in non-speech intervals. While SS 

method drops recognition performance under clean environment, 

the recognition rate of CGN is higher than Baseline by 0.5%. 

These results prove that CGN does not distort original speech. In 

the combination of SS, CepFIR and CGN, its improvement is 

intangible. As a result, the combination of CepFIR and CGN not 

only improves recognition accuracy comparing with 

combinations of conventional method under noisy environments 

and but also preserves high recognition accuracy under clean 

environment. 

7. CONCLUSIONS 

In this paper, we have described the approximated model of 

additive noise in log-spectrum and cepstral mean normalization 

(CGN) which normalizes cepstral gains. The CGN improves not 

only noise robust performance under any noisy environments and 

but also does not without distort original speech. Since the 

proposed algorithm is quite simple and has low computation cost, 

it can be embedded into speech analysis front-end. However, 

CGN processing should start after speech endpoint detection in 

the same way as CMN computed on a whole speech utterance. 

Our research future goals are to modify for frame-wise processing 

and continuous speech recognition and to combine other noise 

robust techniques which are represented by model compensation. 
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Table 1: Average recognition rates in F-16 noise, factory noise, 

and speech babble noise. 

Table 2: Average recognition rates in all fifteen types of noisy 

environments. 
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Baseline CMN RASTA CepFIR

0dB 4.6 4.8 4.6 9.8

10dB 63.3 72.8 70.1 75.1

20dB 95.0 97.9 96.2 97.3

Clean 99.1 99.3 99.4 99.3

Average 65.5 68.7 67.6 70.4

CMN+CVN CMN+CGN CepFIR+CVN CepFIR+CGN

0dB 27.4 26.0 36.8 43.2

10dB 81.9 83.3 81.5 85.9

20dB 96.1 97.8 95.2 97.3

Clean 99.1 99.3 99.0 99.6

Average 76.1 76.6 78.1 81.5

0dB 10dB 20dB Clean

Baseline 20.6 65.3 95.8 99.3

SS 32.9 82.5 94.7 98.6

SS+CMN 43.6 82.0 92.8 98.1

SS+RASTA 44.9 85.9 95.5 98.5

SS+CepFIR 47.9 85.8 95.0 98.2

CepFIR+CGN 53.3 88.7 97.6 99.6

SS+CepFIR+CGN 49.9 88.8 97.8 99.4
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