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ABSTRACT

This paper presents a method to compensate cepstral
coefficients (MFCCs) for a HMM-based speech
recognition system evolving under telephone-channel
degradations. The technique we propose is based on the
combination of the Karhonen-Loève Transform (KLT) and 
Genetic Algorithms (GA). The idea consists of projecting
the band-limited MFCCs onto a subspace generated by the 
genetically optimized KLT principal axes. Experiments
show a clear improvement when the method was applied
to the NTIMIT telephone speech database. Word 
recognition results obtained on the HTK toolkit platform
using N-mixture tri-phone models and a bigram language
model are presented and discussed.

1. INTRODUCTION 

Limiting the decrease of Continuous Speech Recognition
(CSR) system performances due to acoustic environment
changes constitutes a very important issue. It has been
observed that when modifying a CSR system whose
models were trained in a clean conditions to handle real
world environments, its accuracy dramatically degrades. 
Mismatches between training and test data are the roots
of this drawback [1][5].

In order to face this difficulty many techniques have
been developed. They are centered upon two major
problems. One is how to establish a compensation
method for clean models in order to adapt to new
environments. Another assumes that noisy data is
available and proposes to retrain a robust set of models.
However, most of the current approaches assume that the
speech and noise are additive in the linear power domain
and the noise is stationary [1]. 

Investigating innovative strategies becomes essential in
order to overcome the limits of noise-dependant methods.
In this context, Genetic Algorithms (GAs) can constitute
robust solutions since they demonstrate their power to 

investigate beyond the classical space of solutions by 
exploring a wide range of promising areas [3][4]. The
approach we propose can be viewed as a signal
transformation via a mapping operator using a Mel-
Frequency subspace decomposition and Genetic 
Algorithms. This transformation attempts to achieve an 
adaptation of CSR systems under a telephone-channel
degradation.

The idea consists of projecting noisy data, without any
assumption about noise, onto an optimized subspace
generated by principal axes acquired in a canonical
environment (i.e., without noise) through the use of the
KLT. The optimization of principal axes is performed
using genetic operators such as mutations and crossovers
in order to adapt the CSR to the new (telephone channel)
environment.

This paper is organized as follows. In section 2 we
describe the general framework of our approach. Section 3
reports the model linking the KLT to the evolution
paradigm; then we proceed in Section 4 to describe the
genetic operators and other evolution parameters that we 
used in our system. Section 5 presents and discusses the
results obtained by using the proposed KLT-GA-based
CSR system on telephone speech.

2. GENERAL FRAMEWORK

The recognition process aims to provide the most likely
phone sequence w' given the acoustic data o. This
estimation is performed by maximizing a posteriori (MAP)
the p(w/o) probability.

w’= argmaxw p(w/o), (1)

where w is the reference sequence of phones (or words) 
that produces a sequence of observable acoustic data o,
sent through a noisy transmission channel.  is the set of
all possible phone sequences. If we consider p(w), the prior
probability determined by the language model and p(o/w)
the conditional probability that the acoustic channel
produces the sequence o, equation (1) can be written : 

I - 2010-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



w’= argmaxw p(o/w)p(w). (2)

Let  be the set of models used by the recognizer to 
decode acoustic parameters through the use of the MAP.
Then equation (2) can be written as follows:

w’= argmaxw p(o/w, )p(w). (3)

The mismatch between the training and the testing
environments yields a corresponding mismatch in the
likelihood of o given and consequently involves a
breakdown of CSR systems. Decreasing this mismatch
should increase the correct recognition rate. 

The mismatch can be viewed by considering the signal 
space, the feature space, or the model space. In our method
we are concerned with the feature space. We consider a 
transformation T that maps into a transformed feature 
space. Our approach to decreasing the mismatch between
o and  is to find T' and the phone sequence w' that
maximizes the joint likelihood of o and w given :

[T',w']= argmaxw  p(o/w,T, )p(w). (4)

In the approach we propose, a pseudo-joint
maximization over w and T is performed where the typical
conventional Hidden Markov Models-based technique is
used to estimate w, and where a GA-based technique is 
used to enhance noisy data iteratively by keeping noisy
features as close as possible to the clean data. This GA-
based transformation aims at reducing the mismatch
between training and operating conditions by giving the
HMM the ability to recall the training conditions.

The individuals of the population used in the GA are
composed of principal axes obtained after a KLT over
noisy Mel-Frequency Cepstral Coefficients (MFCCs).
These axes evolve through generations and become
evolutionarily adapted to the noisy environment. The
fittest individuals (best principal axes) are used to project
the new incoming noisy data and then these enhanced data
are fed into the HMM-based recognizer. 

3. ROBUSTNESS USING THE KARHONEN-
LOÈVE TRANSFORM 

The principle of the KLT, applied in the context of noise
reduction, is based on the decomposition of the space of
the noisy signal into a signal-plus-noise subspace and a 
noise subspace. As presented in [1], enhancement is
performed by removing the noise subspace and estimating
the clean signal from the remaining signal space. This
estimation is done by projecting the noisy vectors in the
subspace generated by the low-order components of KLT,
given the fact that the high-order eigenvalues are more

sensitive to noise than the low-order ones. We have
applied the KLT in the Mel-scale domain in the context of 
additive car noise [6]. The KLT using the zero-mean noisy

MFCC vector, C
~

, can be expressed as follows:

'~

1
k

N

k
kC , (5)

where the coefficients k are the principal components of
the KLT. They are given by the projection of the vector in
the space represented by the N-eigenvectors basis, ’. The
dimension of the MFCCs is N. Our idea in this paper is to 
consider ’ as an initial population of individuals for an 
evolution process. The components of these vectors are 
then viewed as the genes of these individuals and are
submitted to genetic operators such as mutations and
crossovers in order to find the best ’ according an
evaluation function (fitness).

4. GENETIC PARAMETERS & OPERATORS

GAs have become an increasingly appreciated and well-
understood paradigm beyond the ALife community. Their
principle consists of maintaining and manipulating a 
population of solutions and implementing a 'survival of
the fittest' strategy in their search for better solutions. The
fittest individuals of any population are encouraged to 
reproduce and survive to the next generation, thus
improving successive generations. However, a proportion
of inferior individuals can, by chance, survive and also
reproduce. A more complete presentation of GAs can be
found in the book of Michalewicz [4]. 

For any GA, a chromosome representation is needed to
describe each individual (axis) in the population. The
representation scheme determines how the problem is
structured in the GA and also determines the genetic
operators that are used. Our application involves genes (a
component of an axis) from an alphabet of floating point
numbers with values within the variables upper and lower
bounds. The real-valued GAs are preferred to binary GAs
since real-valued representation offers higher precision
with more consistent results across replications [4].

4.1. Initial and final conditions

The ideal, zero-knowledge assumption is to start with an
initial population composed of KLT principal axes issued
from a set of noisy MFCCs. We choose to end the
evolution process when the population gets homogeneity
in performances. In other words when we observe that
children do not surpass their parents the evolution process
is ended. Our stop criteria can viewed as the convergence
according to a stabilization of performances.
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4.2. Evolving process

In order to keep evolving strategies simple while
allowing adaptation behavior, stochastic selection of
individuals is used. The selection of individuals to
produce successive generations is based on the
assignment of a probability of selection, Pj to each 
individual, j according to its fitness value. The roulette
wheel selection method [3] [4] can be used. The
probability Pj is calculated as follows:

PopSize

k
k

j
j

F

F
P

1

,    (6)

where Fk equals the fitness of individual k and PopSize is 
the population size. The fitness function is defined in
terms of a distance measure between noisy MFCCs 
projected on a given candidate axis ’ and the clean 
MFCCs. The Euclidian distance is used considering the
fact that it is the most adapted measure in the cepstral
domain. The general algorithm describing the evolution
process is given in Figure 1.

4.3. Genetic operators

Genetic operators are used to create new solutions from
the available solutions in the population. Crossovers and 
mutations constitute the basic types of operators. A
crossover creates from two individuals (parents) two new
individuals (children) while a mutation changes the genes
of one individual to produce a new one (mutant).

A simple crossover method can be used. It generates a
random number r from a uniform distribution and does an
exchange of the genes of the parents (X and Y) on the
children’s genes (X’ and Y’). It can be expressed by the
following equations:

rYXrY

YrrXX

)1('

)1('
(7)

The mutation operator consists of randomly selecting
from a given percentage of individuals a number of their
components (genes) and setting them equal to uniform
random numbers.

We have shown in [6] that the use of the heuristic
crossover and the non-uniform mutation [3] are 
appropriate in the case of additive noise. In the context of
telephone speech the experiments using simple crossover
and mutation seems sufficient to get the best ’ given in
equation (5). However, the number of generations is
greater in the case of telephone speech. The values for the
genetic parameters given in Table 1 were selected after

Fix the number of generations Genmax and boundaries of
axes
Generate for each KLT component a population of axes 
For Genmax generations Do

For each set of components Do
Project noisy data using KLT axes
Evaluate the global fitness function

End for
Select and Reproduce

End For
Project noisy data onto space generated by the best
individuals

Fig. 1. Algorithm for an evolutionary search technique for
the best KLT axes.

extensive cross-validation experiments and were shown to
perform well with all data.

5. EXPERIMENTS & RESULTS

5.1 Speech material and CSR platform

In order to study the impact of telephone-channel
degradation on recognition accuracy of both baseline and 
enhanced CSR systems, the NTIMIT database was used.
The NTIMIT database, described in [2], was created by
transmitting sentences in the TIMIT database over long
distance telephone lines.

In our experiments, the training set composed of dr1
and dr2 subdirectories of the TIMIT database was used to
train a set of clean speech models. The speech recognition
system used the dr1 subdirectory of NTIMIT as a test set.
12 MFCCs were calculated on a 30-msec Hamming
window advanced by 10 msec. This static vector is
expanded after the KLT-GA processing to produce a 36-
dimensional (static+first+second derivatives) noted
MFCC_D_A, the vector upon which the HMMs were 
tested. We have evaluated KLT- and KLT-GA-based CSR
systems and a baseline HMM system by using the HTK
platform [7] and tri-phone Gaussian N-mixture models.

5.2. Speech under telephone-channel degradation

Previous work has demonstrated that the use of speech
over telephone lines increases the rate of recognition
errors. For instance, Moreno and Stern [5] report an
approximately 30% recognition rate by using TIMIT as a 
training database and the NTIMIT database for the test. 
When speech is recorded through telephone lines, a
reduction in the analysis bandwidth yields higher
recognition error, particularly when the system is trained
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Genetic Parameters Value
Number of generations 500
Population size 250
Crossover rate 0.25
Mutation rate 0.06
Number of runs 55
Number of frames 114331
Boundaries [-1.0 , +1.0]
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Table 1. Values of the parameters used in the genetic
algorithm.

with high-quality speech and tested using simulated
telephone speech.

In our experiments a population of 250 individuals is
generated for each ’k and evolves during 500 generations.
The maximum number of generations needed and the
population size are well adapted to our problem since no
improvement was observed when these parameters were 
increased. The values of the GA parameters used in our
experiments are given in Table1. Through these
experiments, we found that using the KLT-GA approach
to enhance the MFCCs that were used for recognition with
N-mixture Gaussian HMMs for N=1, 2, 4 and 8, using tri-
phone models, leads to an important improvement in the
accuracy of the word recognition rate. As shown in Figure 
2, this improvement can reach 27% when MFCC_D_A-
and KLT-GA-MFCC_D_A-based CSR systems are 
considered. Experiments show that substitution and
insertion errors are considerably reduced when the KLT-
GA-based approach is included, which gives more
effectiveness to the CSR system. A correct rate of 45% is 
reached by the KLT-GA-MFCC_D_A-based CSR system
when the baseline and the KLT-baseline systems achieve 
18% and 17% respectively.

6. CONCLUSION

We have illustrated the suitability of GAs for an important
real-world application. The approach we have proposed
overcomes many of the limitations found in existing CSR
systems when they are submitted to a telephone-channel
degradation. An important improvement (about 27 %) is
reached when we compared a baseline HMM-based
system, a classic KLT-based method and our KLT-GA-
based technique. The main advantage of our method is that
it does not require any a priori knowledge about the noise.
In the near future, experiments will be carried out in order
to apply our approach to speaker adaptation. In addition,
and in order to gain more insight into the important
question concerning the fitness function, we will test the

Fig. 2. Percentages of word recognition rate of the
MFCC_D_A_-, KLT-MFCC_D_A-, KLT-GA-
MFCC_D_A-based HTK CSR systems using 1-mixture, 2-
mixture, 4-mixture and 8-mixture tri-phone models. The 
MFCC_D_A is the baseline system. The training is carried 
out on the TIMIT database and tested on the NTIMIT
database.

feasibility of an online evaluation function linked to the
phone identification accuracy.
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