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ABSTRACT

Cepstral mean subtraction (CMS) and cepstral normalization 
(CN) have been popularly used to normalize the first and the 
second moments of cepstral coefficients, and proved to be very 
helpful for robust speech recognition [1, 2]. In this paper, a 
unified formulation for Higher Order Cepstral Moment 
Normalization (HOCMN) is developed by extending the concept 
of CMS and CN to orders much higher than three. A whole 
family of normalization techniques for different orders is thus 
proposed. Preliminary experimental results based on Aurora 2.0 
showed that the recognition accuracy can be significantly 
improved with this approach under all noisy conditions. For 
example, HOCMN[1,5,100] (normalization of the first, fifth and 
100-th order cepstral moments) is shown to offer an error rate 
reduction of 32.83% as compared to the conventional CN with a 
full-utterance processing interval, or an error rate reduction of 
20.78% as compared to CN with a segmental processing interval. 

1. INTRODUCTION 

In real world speech recognition applications, robust features are 
highly desired in order to offer acceptable recognition 
performance under various noisy conditions. Mel-frequency 
cepstral coefficients (MFCCs) have been well accepted as a 
good choice for speech features with reasonable robustness, and 
many advanced techniques have been developed based on them. 
Cepstral mean subtraction (CMS) and cepstral normalization 
(CN) have been two commonly used methods. A possible reason 
for this is that CMS effectively removes the DC component in 
cepstral domain, which includes the channel distortion, and 
avoids the low frequency noise to be further amplified. In 
addition, the variance normalization of CN may reduce the 
difference in probability density function (pdf) between the 
clean and noisy speech signals. It was also proposed that the 
normalization of the third-order cepstral moment may achieve 
better performance than CMS and CN [3], and with such 
normalization the pdf of noisy speech signals actually becomes 
even more closer to that of the clean ones. 
The pdf of cepstral coefficients of speech signals is usually 
regarded as a quasi-Gaussian distribution. Under this assumption, 
the odd order moments should be zero and the even order 
moments should be some specific constants. CMS is to 
normalize the first moment, and CN is to normalize the second 

moment in addition. The Higher Order Cepstral Moment 
Normalization (HOCMN) approaches proposed in this paper are 
therefore developed along this line, i.e., the order of the 
moments to be normalized can be more than three. Such moment 
normalization approaches may make the pdf of the noisy speech 
even more closer to that of the clean one. Significant 
improvements in recognition accuracy under all noisy conditions 
were obtained with AURORA 2.0. When a higher order moment 
is normalized, the residual mismatch after CN can be further 
reduced and the feature coefficients may become more robust. 
One possible reason is that the higher order moments are more 
dominated by those samples with larger values, which are also a 
major source of mismatch, and normalization may suppress the 
values of those samples effectively. In this way, not only the 
signal distortion may be reduced, but also the signals can be 
shaped and less mismatched for both small and large value 
samples. 

2. HIGHER ORDER CEPSTRAL MOMENT 
NORMALIZATION (HOCMN) 

Here we describe the HOCMN approach in a unified formulation. 
The N-th order moment of a cepstral coefficient sequence X(n) is 
the expectation value of XN(n), usually approximated by the time 
average over some interval, 
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The purpose of moment normalization of order N is then to have
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if N is an odd integer, where X[N](n) is a transformed sequence of 
X(n) whose N-th order moment has been normalized, and 
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if N  is an even integer, where MN is the N-th moment of a 
normalized Gaussian distribution, N(0,1), which can be obtained 
by the moment generating function. With the above notation, the 
well-known CMS processing is 

[1]( ) ( ) ( ) [ ( )]CMSX n X n X n E X n ,   (4) 

where E[X(n)] can be approximated by equation (1) with N=1,
and the well-known CN processing is 

2
[1,2] [1] [1]( ) ( ) ( ) [ ( )]CNX n X n X n E X n ,  (5) 

where X[L,N](n) is a transformed sequence whose L-th and N-th
moments have both been normalized as in equations (2) and (3), 
and so on. With the above, we now extend the moment 
normalization to higher orders as follows. 
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2.1. HOCMN for an even integer N

When performing HOCMN with an even integer N, we simply 
scale the first-order moment normalized coefficients X[1](n) by a 
constant, such that the N-th order moment of the coefficients can 
also be normalized as in equation (3). Such normalization 
therefore usually co-exists with the first-order normalization or 
CMS, and can be expressed as 

[1, ] [1]( ) ( ) ( )N CMSX n bX n bX n ,   (6) 

where b is the scaling factor, and the CN transformation in 
equation (3) is a special case of equation (6) with N=2. Solving 
equation (6) with equation (3), we have 

[1, ] [1][ ( )] [ ( )]N N N
N NE X n b E X n M , and 

1

[1]

[ ]
[ ( )]

N N
N

M
b

E X n
     (7) 

The value of b in equation (7) can be obtained using the 
approximation in equation (1). If N becomes relatively large, the 
value of b will be dominated by ( 1)

0 [1][ ( )]T
nMax X n . In this case 

we can approximate the value of b by 
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It should be noted that from equation (6) it is clear that the N-th
order moment of a coefficient sequence X(n) can be normalized 
for only a single even number N. In other words, different N
gives different values of b as in equation (7), and the scaling 
transformation of equation (6) can be performed only with a 
single value of b. For example, if X[N](n) is normalized for N=4,
it is not normalized for N=2 in any case. 

2.2. HOCMN for an odd N

The HOCMN for an odd order can be extended from the third-
order cepstral moment normalization approach previously 
proposed [3]. It usually also co-exists with the first-order 
normalization or CMS, and can be expressed as a nonlinear 
transformation of the coefficients normalized with the first as 
well as the ( 1)N th  order moments, X[1,N - 1](n),

1
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We then have 1
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N Nc aE X n aM because

[1, ] [1, 1][ ( )] [ ( )] 0N NE X n E X n  from equation (2), and 
1NM  is 

defined by equation (3) for ( 1)N  being an even integer. 
Equation (9) can then be re-written as 

1
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Equation (2) for X[1,N](n) is then 
1
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When a is small, we can delete the higher order terms in 
equation (11) and keep only the last two terms. In this way the 
value of a can be approximated by 
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Figure 1. Flow chart of odd-order HOCMN 
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Figure 2. An odd order HOCMN followed by an even order 
HOCMN

Because equation (12) is only an approximation, a recursive 
procedure as shown in Figure 1 can be used to find a good 
solution. In Figure 1, HOCMN[N] or HOCMN[L,N] represents the 
processes of higher order cepstral moment normalization with 
order N or orders L and N both, etc.. Note that although the input 
to the loop in Figure 1 is normalized to both order 1 and order 

1N , after the transformation of equation (9) the ( 1)N th
moment may not be normalized any longer. Therefore another 
normalization process of order 1N  is needed for the next loop. 
Practical experiments indicate that two iterations are usually 
enough to obtain a well converged solution. 

2.3. HOCMN for both an even order N and an odd 
order L

A simple cascade method as shown in Figure 2 can be used to 
integrate the two techniques presented above. We can first 
normalize the feature coefficients by HOCMN with an odd order 
L and then by another HOCMN with an even order N. After such 
a procedure, a specific odd-order (L-th) moment and a specific 
even-order (N-th) moment of the feature coefficients can both be 
normalized. As in Figure 2, X[1,L,N](n) is the feature sequence 
normalized to 1st , L-th and N-th order, and HOCMN[1,N,L] is the 
procedure to obtain such a sequence. 

3. EXPERIMENTAL SETUP 

The above approaches were evaluated by the AURORA 2.0 
database, which is an English connected-digit string corpus. Two 
training conditions (clean condition/multi-condition) and three 
testing sets (sets A/B/C) were defined by AURORA 2.0 [4]. The 
clean-condition training has acoustic models trained by clean 
speech only, while the multi-condition training has models 
trained by a corpus with both clean and noisy speech. The 
testing set A includes four different types of noise which were 
used in the multi-condition training, while the testing set B 
includes another four different types of noise not used in the 
multi-condition training. The testing set C then includes noise 
types from both sets A and B, plus additional convolutional 
noise.
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Whole-word HMM models were used as specified by AURORA 
2.0. Each word had 16 states and 3 Gaussian mixtures per state. 
The speech features were extracted by the AURORA WI007 
Front-end, which converted each signal frame into 13 cepstral 
coefficients (MFCCs, C1~C12 plus the log-energy). The first 
and second derivatives were then computed. In another version, 
the log-energy was replaced by C0. 
The HOCMN approaches proposed here were implemented in 
two different ways, by full-utterances and by segments. In the 
former, the summation in (1) included the whole utterance when 
evaluating the moments. In the latter, or by segments with length 
l , the summation in equation (1) was performed by a segment of 
frames including the preceding / 2l  frames and following / 2l
frames. 

4. EXPERIMENTAL RESULTS 

4.1. Baseline results 

The baseline experiments were performed with the clean-
condition training for all the three testing sets A, B and C, and 
the results are listed in Table 1. In this table the word accuracy 
was averaged over all different noise types within each testing 
set and averaged over all different SNRs from 0dB to 20dB. The 
results in row (1) of Table 1 were obtained with the standard 
AURORA 2.0 front-end, MFCC features C1~C12 plus the log-
energy without any extra processing. The next two rows (2) and 
(3) are for CN with a full-utterance processing interval, using 
log-energy and C0 as the energy terms respectively. Because the 
result in row (3) using C0 is significantly better, C0 will be used 
in all the following experiments. The row (4) is for CN with a 
segmental processing interval as mentioned previously with the 
segment length l being 86 frames, which gives better results. The 
next row (5) is for the third-order moment normalization (TMN) 
previously proposed [3] also with a full-utterance processing 
interval, in which the first, second, and the third order moments 
are all normalized. This approach is apparently even better. The 
last row (6) is exactly the same as row (5) except the TMN was 
performed with segments with length l being 86 frames, which 
offers better performance than row (5). 

4.2. Initial results for HOCMN 

We first performed the proposed normalization approach 
HOCMN[1,N] for N being an even integer, increasing from 2 up 
to 100. When full-utterance was used as the processing interval, 
the results are the lowest curve (a) in Figure 3. So the first point 
for the curve for N=2 is exactly the averaged result for CN, or 
row (3) in Table 1, 75.08%. It can be found that the recognition 
accuracy increases monotonically with the order N, and becomes 
more or less saturated when N goes up to 50 or 100. The results 
in curve (a) can be further improved by replacing the processing 
interval with segments with length l=86 frames. The results are 
the middle curve (b) in Figure 3. The first point of this curve for 
N=2 is exactly the average accuracy for CN (l=86) in the row (4) 
of Table 1. It is clear that the improvements observed for 
HOCMN[1,N] as compared to CN remain true when the full-
utterance processing interval is replaced by segments. When we 
further cascaded this approach with a third order moment 
normalization, also with a segment length l=86 frames to  

Table 1. Recognition accuracy for the baseline experiments with 
clean-condition training 

Table 2. Complete data for the best results for the curves (a)(b)(c) 
in Figure 3 (N=100) and relative error rate reduction as 
compared to the baseline (N=2) for the same curve listed in rows 
(3)(4)(6) of Table 1. 

Figure 3. Recognition accuracy for HOCMN with different even 
orders N (a) HOCMN[1,N] (full-utterance) (b) HOCMN[1,N] (l=86)
(c) HOCMN[1,3,N] ( l3=lN=86)

perform HOCMN[1,3,N] as discussed in section 2.3, the results are 
the highest curve (c) in Figure 3. The first point of this highest 
curve (c) for N=2 is the case of third-order moment 
normalization, TMN or HOCMN[1,2,3], in the row (6) of Table 1. 
Apparently the higher order moment normalization does offer 
improvements as compared to TMN, and the cascade with a 
third order moment normalization does help for all even order 
moment normalization. 
Table 2 lists the improvements obtained by the higher order 
moment normalization for the three curves in Figure 3, i.e., the 
last point for N=100 as compared to the baseline of the first 
point for N=2 for each curve. For example, for the lowest curve 
(a) for HOCMN[1,N], full-utterance, N=100 produces an average 
accuracy of 81.16 while N=2 (CN), or row (3) of Table 1, gives 
only 75.08, and the error rate reduction is 24.40%, etc.. It can be 
found that in all the 3 cases the improvements are significant, 
although getting relatively less when the baseline gets better. 
The best result obtain here, the last point (N=100) for the highest 
curve (c), 82.57, represents 5.94% error rate reduction as 
compared to TMN as shown in the last row of Table 1. Also 
listed in Table 2 are the detailed data for testing sets A, B and C 
for the three cases of N=100.

Set A Set B Set C Ave

(4) MFCC (C0), CN (l =86)

(5) MFCC (C0), TMN (full-utterance)
(6) MFCC (C0), TMN (l =86)

(2) MFCC (logE), CN (full-utterance)
(3) MFCC (C0), CN (full-utterance)

(1) MFCC (logE)

Baseline Experiments Clean Condition

Baseline

Set A Set B Set C Ave in Table 1

(3): 75.08
(4): 78.87
(6): 81.47

Clean Condition Training Relative Error 

Rate Reduction

24.40%
(b) C0, HOCMN[1,100] (l 100=86) 14.75%
(c) C0, HOCMN[1,3,100] (l 3=l 100=86) 5.94%

Best Results in Figure 3:

(a) C0, HOCMN[1,100] (full-utterance)
HOCMN, N=100
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 (a)      (b) 

N

l

Figure 4. (a) Recognition accuracy for HOCMN[1,N,100] for odd 
order N=3,5,7,9,11, lN=130, l100=86 , (b) Recognition accuracy 
for HOCMN[1,100] with different l100 and for HOCMN[1,3,100] with 
different l3 and l100=86

Figure 5. Comparison of several representative cases tested here 
for different types of noise in different testing sets, averaged 
over all SNR values 

Figure 6. Comparison of several representative cases tested here 
for different SNR values, averaged over all different types of 
noise in different testing sets 

4.3. Further improvements with HOCMN 

The best result obtained above, the last point for N=100 for 
curve (c) in Figure 3, is with HOCMN[1,3,N], l3=l100=86, where lN

is the length l for the processing interval for moment 
normalization of order N. But from section 2.2, moment 
normalization can also be performed with other odd numbers. 
We thus further extended this best result obtained above to 
HOCMN[1,N,100], lN=130, l100=86, where N=3, 5, 7, 9, 11, and the 
results are shown in Figure 4 (a). It can be found that different N

gives slightly different performance, and N=5 is the best. On the 
other hand, because the segmental processing intervals does give 
better results than full-utterance intervals, and the length l=86 or
130 frames used previously was obtained empirically with some 
initial experiments, further experiments were therefore 
performed. The results for HOCMN[1,100], with different length 
l100 was therefore obtained and plotted as the lower curve in 
Figure 4 (b), and those for HOCMN[1,3,100], l100=86 and different 
l3 as the upper curve in the figure. It is clear from the two curves 
in the figure that the performance really depends on the segment 
length l, and l=86 frames may be a good choice for N=100 (in 
fact this was used for all even N as shown in Figure 3), and 
l=120 may be a good number for N=3 or other odd integers. The 
best result obtained here is therefore an accuracy of 83.26 with 
HOCMN[1,5,100] with l5=120, l100=86, which represents an 
relative error rate reduction of 32.83% as compared to the 
conventional CN with a full-utterance processing interval (row 
(3) of Table 1), or an error rate reduction of 20.78% as compared 
to CN with a segmental processing interval (row (4) of Table 1). 
Figure 5 and 6 then compare the several representative cases 
tested here in this paper: CN (full-utterance), CN (l=86),
HOCMN[1,100] (l100=86), and HOCMN[1,5,100] (l5=120, l100=86),
either averaged for all SNR values but separated for all noise 
types and test sets, or averaged for all noise types and test sets 
but separated for all SNR values. The improvements obtained 
with the approaches proposed here in this paper are quite 
obvious in all cases. In addition, from Figure 6 it is found that 
reasonable performance is achievable when SNR is 10dB or 
higher. For low SNR cases (e.g. 5dB or lower), the performance 
is degraded inevitably. But some noise reduction techniques can 
be used in the front-end and some addition robustness 
approaches such as temporal filtering can be used after HOCMN 
to provide better performance. 

5. CONCLUSION 

In this paper, we proposed a unified framework for higher order 
cepstral moment normalization. Experimental results verified 
that improved robustness is achievable especially under highly 
mismatched conditions. It is also easy to integrate this approach 
with other temporal filtering approaches or noise reduction 
front-end techniques. 
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