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ABSTRACT

In general, entropy gives us a measure of the number of
bits required to represent some information. When applied
to probability mass function (PMF), entropy can also be
used to measure the “peakiness” of a distribution. In this
paper, we propose using the entropy of short time Fourier
transform spectrum, normalised as PMF, as an additional
feature for automatic speech recognition (ASR). It is in-
deed expected that a peaky spectrum, representation of clear
formant structure in the case of voiced sounds, will have
low entropy, while a flatter spectrum corresponding to non-
speech or noisy regions will have higher entropy. Extend-
ing this reasoning further, we introduce the idea of multi-
band/multi-resolution entropy feature where we divide the
spectrum into equal size sub-bands and compute entropy in
each sub-band. The results presented in this paper show
that multi-band entropy features used in conjunction with
normal cepstral features improve the performance of ASR
system.

1. INTRODUCTION

Most of the state-of-the-art automatic speech recognition
(ASR) systems use cepstral features derived from short time
Fourier transform (STFT) spectrum of speech signal. The
most common features used are MFCC [1], PLP [2] and
RASTA [3] or some of their variants. Some recently pro-
posed cepstral features like MCMS [4] and PAC [5] have
also shown good performance. While cepstral features are
fairly good representation, they capture the absolute energy
response of the spectrum. Further, we are not sure that all
the information present in the STFT spectrum is captured
by them. In this paper we suggest to capture further infor-
mation from the spectrum by computing its entropy.

Entropy plays a central role in information theory as a
measure of information, choice and uncertainty (page 11
of [6]). The same entropy can be used to measure the “peak-
iness” of a spectrum if we convert the spectrum into a proba-
bility mass function (PMF). For voiced sounds, spectra have
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clear formants and entropies of such spectra will be low.
On the other hand spectra of unvoiced sounds are flatter and
their entropies should be higher. Therefore, entropy of a
spectrum can be used as an estimate for voicing/unvoicing
decision. In this paper, we extend the idea further and intro-
duce multi-band/multi-resolution entropy feature. Depend-
ing upon the phoneme, entropy of the sub-bands where a
formant is present will be low and the sub-bands which are
flatter will have higher entropy. The important thing is even
if the formant is slightly displaced from its position in noisy
speech, its entropy will not be affected much. We expect
this new feature to capture the “peakiness” of the spectrum
and to be different from the usual cepstral features derived
from spectral energies.

The remaining paper is arranged as follows: In the next
section we introduce the spectral entropy feature and its
computation for the present setup. In Section 3 we explain
the database used and the experimental setup. Section 4
contains the results followed by conclusions in Section 5.

2. SPECTRAL ENTROPY FEATURE

2.1. Motivation

Entropy can be used to capture the “peakiness” of a PMF. A
PMF with sharp peaks will have low entropy while a PMF
with flat distribution will have high entropy. For this rea-
son entropy is generally associated with a classifier’s output
posteriors distribution and gives us a measure of the classi-
fier’s confidence. In previous work [7], it has been shown
that entropy of the posteriors distribution at the output of
a classifier can be used for weighting different streams in
multi-stream combination.

In this paper, the aim is entirely different and we want to
explore the peak capturing property of the entropy to cap-
ture peaks (also called as formants) of a spectrum. In case of
STFT spectra of speech, we observe distinct peaks and the
position of these peaks in the spectra are dependent on the
phoneme under consideration. These formants are the one
which characterise a sound. The central idea while using
entropy as a feature is to capture the peaks of the spectrum
and their location. The problem with computing entropy of
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a spectrum is that spectrum is not a PMF (the area under
the spectrum doesn’t sum upto 1). In order to convert the
spectrum into a PMF like function we divided the individ-
ual frequency components of the spectrum by sum of all the
components.
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for � � � to � (1)

where �� is the energy of ��� frequency component of the
spectrum, � � ���� � � � � �� � is the PMF of the spectrum
and � is the number of points in the spectrum (order of
STFT). This ensured that the area under the normalised spec-
tra summed to 1 and this normalised spectra can be treated
as a PMF for the purpose of computing entropy. For each
frame the entropy was computed from � by:
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Fig. 1(b) shows the contours of the entropy computed on
the full-band spectrum. From the figure we observe that en-
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Fig. 1. Entropy computed from the full-band spectrum. (a)
Clean speech wave form, (b) Entropy contour for clean
speech, (c) Speech corrupted with factory noise at 6 dB
SNR, and (d) Entropy contour for speech corrupted with
factory noise at 6 dB SNR.

tropy computed on full-band can be used as an estimate of
voicing/unvoicing decision. Also, we know that in presence
of noise the formants are the one which are least affected as
compared to the other parts of the spectrum. So intuitively
we can assume that entropy of the spectrum if used for voic-
ing/unvoicing decision will be robust to noise, and indeed it
is true as shown in Fig. 1(d). Though the dynamic range
of the entropy contour is squeezed in presence of noise, it
retains its discriminatory property.

2.2. Multi-band/Multi-resolution entropy

We realized that entropy of the full-band spectrum is not a
strong feature on its own if we want to capture the formants
of the spectrum as well as their location. The reason for this
is that entropy of the full-band spectrum cannot resolve the
formants location as it captures only the gross peakiness of
the spectrum.

To capture the location of the formants we introduced
the idea of multi-band entropy features. To extract multi-
band entropy features we divide the full-band spectrum into
� non-overlapping sub-bands of equal size. Entropy is com-
puted for each sub-band and we obtain one entropy value for
each sub-band. These sub-band entropy values indicate the
presence or absence of formants in that sub-band. The way
full-band spectrum was converted into a PMF, each sub-
band spectrum should be converted into a sub-band PMF.
Using (1) and (2) we separately compute entropy for each
sub-band PMF.

When � � �, we work with the full-band spectrum and
obtain one entropy value. When there are two sub-bands
(� � �) we obtain two entropy values, one from each sub-
band, and so on. In our experiments we changed the param-
eter � from � to � and obtained the entropy value from each
sub-bands. All the entropy values obtained by varying �

were appended to form a ���� ��	�
�����-dimensional
entropy feature vector.

Figure 2 shows the contours of ��� and ��� component
of the entropy feature vector. Different components of the
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Fig. 2. (a) and (b) are contour of the � �� and ��� compo-
nent of the entropy feature vector, respectively, for speech
corrupted by 6 dB SNR factory noise.

entropy feature vector have different dynamic ranges and
have different activation points depending upon whether a
formant is present in a particular sub-band or not.
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Instead of working on the raw spectra, which contain
pitch information also, we worked on spectra smoothed by
filter bank.

3. EXPERIMENTAL SETUP

In the experiments reported in this paper, Numbers95 data-
base of US English connected digits telephone speech [8]
is used. There are 30 words in the database represented by
27 phonemes. Training is performed on clean speech utter-
ances and testing data, which is different from the training
data, is corrupted by factory noise from Noisex92 datab-
ase [9] added at different signal-to-noise-ratios (SNRs) to
Numbers95 database. We ran the baseline experiments us-
ing PLP [3] features. There were 3330 utterances for train-
ing and 1143 utterances were used for testing the system.

We have used Hidden Markov Model (HMM)/Artificial
Neural Network (ANN) hybrid system [10] for perform-
ing the experiments. The ANNs used were a single layer
multi-layer perceptron (MLP) and the number of units in
the hidden layer of an MLP were proportional to the dimen-
sion of the input feature vector stream fed to that MLP. The
baseline PLP feature vectors used in our system were: 12-
dimensional raw cepstral coefficients (��� coefficient is not
used) appendedwith 13-dimensional delta and 13-dimensional
delta-delta cepstral coefficients. The input layer was fed by
9 consecutive data frames.

The HMM used for decoding had fixed state transition
probabilities of 0.5. Each phoneme had a 1 state mono-
phone model for which emission likelihoods were supplied
as scaled posteriors [10]. Many standard techniques like tri-
phone modelling and state-tying, which are used in state-of-
the-art GMM/HMM systems are not possible in HMM/ANN
systems, but HMM/ANN systems don’t need any condition-
ing of the new features as ANN learns the correlation on its
own without the need of any fine tuning. The minimum
duration for each phoneme is modelled by forcing 1 to 3
repetitions of the same state for each phoneme. Phone dele-
tion penalty parameter was empirically optimised for clean
speech test database and then it was kept constant for all the
experiments.

4. RESULTS

The results in terms of word-error-rates (WERs) of the en-
tropy features alone are shown in Table 1. For example,
’Two-bands Entropy’ feature is obtained by dividing the
full-band into two equal sub-bands and obtaining one en-
tropy value from each sub-band. The two entropy values
thus obtained are appended to form a 2-dimensional entropy
feature vector used for training and testing the system. En-
tropy feature vectors are obtained for upto 5 sub-bands and
their results are shown in the table (Table 1). WER results

Word-Error-Rates for entropy features alone

Feature Feature Dimension (J) WER
Full-band Entropy 1 88.8%
Two-bands Entropy 2 68.4%
Three-bands Entropy 3 57.8%
Four-bands Entropy 4 54.4%
Five-bands Entropy 5 52.3%

Entropies Appended 1+2+3+4+5=15 23.7%

Table 1. Word-Error-Rates (WERs) for clean speech for
multi-band entropy features alone. The last row result
is obtained when all the entropy features �� � � to ��
are appended to form a 15-dimensional entropy feature
vector.

indicate as the number of sub-bands are increased, the per-
formance improves and sort of starts levelling down. We
stopped at 5 sub-bands to keep reasonable number of points
in each sub-band for reliable entropy computation. So going
from full-band entropy feature to multi-band entropy feature
pays rich dividends.

The next experiment was to see how the system per-
forms when these individualmulti-band entropy feature vec-
tors from different sub-bands are appended and a big multi-
band entropy feature vector is formed. In Fig 3 we show
the results when all the 15 entropy vectors obtained above
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Fig. 3. WERs for Entropy features, PLP features and PLP
features appended with ent ropy features at different SNRs.
Clean speech is represented by ’SNR 30 dB’.

(Table 1) are appended to form a 15-dimensional entropy
feature vector. WER results are shown for clean and noisy
speech. Noise used was factory noise from Noisex92 database
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added at different SNRs. The last row of Table 1 is same as
the entropy feature performance for clean speech in Fig. 3.
The entropy feature when used alone doesn’t compete with
the usual PLP cepstral features used for ASR but the good
thing is that it doesn’t degrade rapidly in presence of noise.
Moreover, in presence of noise, when the entropy feature is
appended to the PLP cepstral features, noticeable improve-
ment in the performance of the system is observed. These
multi-band entropy features improve the robustness of the
baseline system. The relative improvement in performance
is 1.0%, 14.2%, 20.7% and 23.7% for clean, SNR 12, SNR
6 and SNR 0, respectively. This result indicates that en-
tropy feature brings more improvement as the noise level
increases.

In the last, though the number of parameters of the MLP
are more when higher dimensional feature vector (PLP +
Entropy Feature = 53-dimension) is used, it has been veri-
fied through experiments that the performance of the indi-
vidual features alone do not change considerably with the
increase in number of parameters of their respective MLP
models.

5. DISCUSSION AND CONCLUSION

In search of new features having complementary informa-
tion, this paper investigated the use of entropy of the spec-
trum as an additional feature. It has been shown that en-
tropy of the full-band spectrum can be used as an estimate
of voicing/unvoicing. Going one step further we suggested
dividing the spectrum into equal sub-bands and obtaining
entropy from each sub-band and using that as an additional
feature for ASR. Good improvement in performance is ob-
tained when multi-band entropy feature is appended to the
usual PLP cepstral features, specially in case of noise. The
new feature though doesn’t compete with the cepstral fea-
tures in absolute sense, it seems to be quite robust to noise.
The reason for robustness can be attributed to the fact that
multi-band entropy feature tries to capture the location of
the formants and formant are less affected by noise.

The next step could be to divide the full-band into un-
equal parts depending upon the a-priori knowledge about
the formants in the basic spectra obtained from the phonemes.
Also, to automatically find the optimal sub-band boundaries
every 10 ms based on minimising the combined entropies of
the sub-bands holds promise.

ACKNOWLEDGEMENTS

The authors want to thank the Swiss National Science Foun-
dation for supporting this work through the National Centre
of Competence in Research (NCCR) on ”Interactive Multi-
modal Information Management (IM2)”, as well as DARPA

through the EARS (Effective, Affordable, Reusable Speech-
to-Text) project.

6. REFERENCES

[1] Lawrence Rabiner and Biing-Hwang Juang, Funda-
mentals of Speech Recognition, Prentice Hall, Engle-
wood Cliffs, New Jersey, 1993.

[2] Hynek Hermansky, “Perceptual linear predictive
(PLP) analysis of speech,” J. Acoust. Soc. Amer., vol.
87, no. 4, pp. 1738–1752, 1990.

[3] Hynek Hermansky and Nelson Morgan, “Rasta pro-
cessing of speech,” IEEE Trans. Speech, Audio Pro-
cessing, vol. 2, no. 4, pp. 578–589, 1994.

[4] Vivek Tyagi, Iain McCowan, Hervé Bourlard, and He-
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