
A LOCALLY WEIGHTED DISTANCE MEASURE FOR EXAMPLE BASED SPEECH
RECOGNITION

Mathias De Wachter, Kris Demuynck, Patrick Wambacq and Dirk Van Compernolle

Katholieke Universiteit Leuven – Dept. ESAT
Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium

{mathias.dewachter,kris.demuynck,patrick.wambacq,dirk.vancompernolle}@esat.kuleuven.ac.be

ABSTRACT

State-of-the-art speech recognition relies on a state-dependent dis-
tance measure. In HMM systems, the distance measure is trained
into state-dependent covariance matrices using a maximum likeli-
hood or discriminative criterion. This “automatic” adjustment of
the distance measure is traditionally considered an inherent advan-
tage of HMMs over DTW recognizers, as those typically rely on a
uniform Euclidean distance. In this paper we show how to incor-
porate a non-uniform weighted distance measure into an example-
based recognition system. By doing so we manage to combine
the superior segmental behaviour of DTW with the near-optimal
acoustic distance measure as found in HMMs. The non-uniform
distance measure enforces modifications to the k nearest neigh-
bours search, an essential component in our large vocabulary DTW
approach. We show that the complexity of our solution remains
within bounds. The validity of the full approach is verified by
experimental results on the Resource Management and TIDigits
tasks.

1. INTRODUCTION

Research into optimal acoustic features for ASR has shown that
features are not equally informative for the different phones. Hence
the strong acoustic dissimilarity between different sounds requires
the acoustic feature vector to be an optimal compromise, rather
than the optimal one for each sound independently.

In almost all state-of-the-art HMM speech recognition sys-
tems, an inherent automatic adjustment of the distance measure
takes places at the level of the covariance matrices of each state.
Indeed, this property is often considered an inherent advantage
of HMMs over DTW, since traditionally DTW recognizers use a
uniform Euclidean distance metric over a globally scaled acoustic
space (e.g. through cepstral liftering).

In section 2, we show that this judgment is inaccurate, as
the use of different covariance matrices for each HMM state can
be translated to the example-based setting, by means of a locally
weighted distance measure.

In section 3, the problems the non-uniformly scaled distance
measure poses to the k-nearest neighbours selector of our proto-
type system are outlined. We propose a fast algorithm that can
deal with non-uniform distance measures, and that takes advan-
tage of the between-frame dependencies typically found in speech
recognition tasks. Scaling experiments show its good behaviour
with increasing database sizes.

Research funded by the Fund for Scientific Research Flanders (FWO-
project G.0249.03).

2. A LOCALLY WEIGHTED DISTANCE MEASURE

2.1. Theoretical framework

Viterbi decoding for HMMs and DTW for example-based recog-
nition are very similar. Both use a dynamic programming search
to find a path through a finite state machine (FSM) that optimally
matches a sequence of input vectors. And in both cases, the cost
of the path consists of observation costs and transition costs. The
former is used to match the current input vector to the FSM state
and the latter to move from state to state. However, there are a few
important differences, that can be summarized as follows:

• HMMs use a single model with complex local statistical
distributions, while DTW uses a large amount of parallel
templates with a simple distance metric.

• HMM emission probability densities are state-dependent,
while DTW uses a uniform distance measure.

To understand similarities and differences better, it is useful
to develop an HMM interpretation of our large vocabulary DTW
recognizer by explicitly writing down the DTW recognizer as an
HMM system. For the sake of simplicity, we will assume usage of
unique sub-word units (e.g. phonemes) as elementary segments.

Each elementary unit is represented by all the examples in the
database, and each of those examples may be seen as an M-state
HMM where:

• every feature vector in the training database defines a unique
HMM state.

• local constraints on state transitions –typical to DTW– are
used to enforce temporal consistency of the input sequence
and the template [1].

• observation costs are given by a single gaussian pdf. Its
mean is the local feature vector and the covariance matrix
is somehow defined by the distance measure.

Now, calling the D-dimensional input vector �x, the relevant database
vector �y, and the applicable covariance matrix Σ, the negative log-
arithm of the observation likelihood is given by

− log(f(�x|�y)) = log
“
(2π)D/2

”
+ log

“
|Σ|1/2

”
+ 1/2(�x − �y)T Σ−1(�x − �y), (1)

which yields, dropping the constant first term and some constant
scaling factors, an equivalent distance measure:

d(�x; �y) = (�x − �y)T Σ−1(�x − �y) + log (|Σ|) (2)

I - 1810-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

Eq. 2 consists of 2 terms: (a) a Mahalanobis distance between �x
and �y and (b) a bias compensation. The covariance matrix param-
eterizes both terms.

A typical DTW system now uses a highly degenerative form
of eq. 2 in which the covariance matrix is fixed to a single diago-
nal matrix for all states. This implies that the bias compensation
term becomes identical for all instances and hence can be omitted.
Furthermore, since the covariance weighting is uniform, it can be
applied as a preprocessing step, and the resulting distance mea-
sure becomes the square of the L2 metric. However, it should be
stressed that this extreme simplification is not necessary, and be-
low we will empirically show that it is far from optimal. Rather,
it is supported by computational motives and ignorance about the
covariance. On the other hand it leads to a true metric which is
symmetric in �x and �y, a property which is lacking in the HMM
framework.

2.2. Associating covariances to the database vectors

The HMM framework requires the estimation of mean vectors and
covariance matrices. In our example, though, each state has been
defined by a single observation. Using the vector itself as mean
seems reasonable, but there is no straightforward methodology to
determine the covariance matrix. Grouping examples of the same
phonemes into some “mean model” in order to have enough ob-
servations for covariance estimation obviously leads us back to a
normal HMM approach. However, in this case the advantages of
our example-based approach, which are a consequence of having
all original information about each example available, would be
lost [2]. Therefore, we keep all examples as separate models, and
indirectly estimate suitable covariance matrices.

Let’s state the facts and principles that will guide our further
development:

• Within the HMM framework mean and variance are defined
by state identity. Hence it is not the incidental value of �y
that should define Σ, but its underlying identity.

• From a pattern matching and metric perspective it would be
nice if eq. 2 were symmetric in �x and �y and that Σ was a
smooth function of all the parameters that define it.

The above criteria are not compatible and we will stick to the
HMM approach for the time being. In first instance we approxi-
mate Σ in Eq. 2 with a diagonal covariance structure. Furthermore
we assume that the underlying identity of reference vectors �y can
be clustered into M classes and we use the class’ sample variance
as an estimate for Σ.

Using these assumptions, we get a reduced form of eq. 2:

d(�x; �y) =
DX

j=1

„
xj − yj

σ̂c,j

«2

+ log

DY

j=1

σ̂2

c,j

!
(3)

with σ̂2

c,j the sample variance of class c for dimension j, and c the
class assigned to database vector �y. Of course, there still remains
the problem of assigning class identities to each database frame.

As our “DTW-models” only have the basic acoustic modeling
capabilities of a single shared diagonal-covariance Gaussian per
class, we can accommodate for classes that are more fine-grained
than HMM tied states. Clustering based on acoustic resemblance
of vectors or complete templates, or based on discriminative crite-
ria comes to mind.

Preprocessing global local weighting Rel. Impr.
TIDigits

cepstra (26 feat.) 1.46 0.90 38%
mida (15 feat.) 0.76 0.37 51%
Resource Management (feb89 test set, word-pair grammar)
cepstra (26 feat.) 16.52 10.15 39%
mida (25 feat.) 9.92 6.21 37%

Table 1. Word error rates and relative improvement for our proto-
type example-based recognizer. Two different types of preprocess-
ing are combined with global Euclidean distance and the locally
weighted distance.

2.3. Experiments

In our proof-of-concept implementation, we only use class label-
ing information that is readily available from our in-house HMM
system. The labels consist of both phonetic properties and non-
verbal information. The phonetic properties are summarized as
context dependent HMM state numbers based on a phonetic deci-
sion tree [3] for the RM task, and state numbers of context inde-
pendent word-model HMMs for the TIDigits task. The non-verbal
information consists of gender, dialect region and speaker identity.
The basic recognition units are context independent phoneme ex-
amples for the RM task, and (also context independent) complete
digit examples for the TIDigits task. Note that classes for assign-
ing distance measures and recognition units are independent.

Classes are based on the product of HMM state number and
non-verbal information. Since not enough data is available for
each of these fine-grained classes, the variances are estimated us-
ing a hierarchical Bayesian re-estimation procedure, which han-
dles smoothing and back-off. For the given tasks, dialect infor-
mation and speaker identity do not significantly help performance,
and hence are omitted in the presented experiments. Gender infor-
mation is used, and improves performance by up to 10% relative.
298 classes are used for the TIDigits task and 1078 for RM.

The usefulness of the locally weighted distance measure is
shown in table 1. Results are presented for two different feature
sets. The “cepstra” are sine-liftered cepstra and their first time
derivatives. “Mida” is an improved variant of LDA based on Mu-
tual Information [4]. It takes 24 mel-scale filterbank coefficients
and its first and second time derivatives as input to produce 25 fea-
tures for the RM task and 15 features for the TIDigits task. The
recognition results for both preprocessings show a strong improve-
ment over the uniformly scaled metric.

While the results of this simple implementation are satisfying,
it should be stressed that there is still a lot of room for improve-
ment. Discriminative weight estimation and class assignment as
well as the use of full covariance matrices are obvious candidates
for further research.

3. A FAST K-NEAREST NEIGHBOURS ALGORITHM
FOR SPEECH RECOGNITION

3.1. Introduction

Our example-based approach to large vocabulary recognition uses
a bottom-up template selector to heuristically limit the search space
of the decoder [2]. The selector takes as input a number of nearest
neighbours and investigates their time evolution to detect interest-
ing templates. As we want to use the complete training database

I - 182

➡ ➡

during recognition, a full distance calculation to all database vec-
tors for each input frame would be too time-consuming. Hence a
fast k-nearest neighbours (kNN) algorithm is essential to keep the
computational complexity of our example-based recognizer within
reasonable bounds. Although there is ample choice of different
kNN algorithms in literature, our current problem deviates consid-
erably from mainstream kNN research.

• The combination of a moderate dimensionality and a large
number of vectors poses problems for typical algorithms
such as the kd-tree [5] that perform very well for small di-
mensionality. This problem is widely known as the curse of
dimensionality.

• The number of requested nearest neighbours k is a few
orders of magnitude larger than in typical applications of
kNN. In our recognizer, k will be somewhere between 103

and 105 depending on database size.

• Successive queries are samples from a continuous speech
signal, and hence they will be correlated and evolve gradu-
ally through the acoustic space. Therefore, the solution of
one query can conceivably be a valuable starting point for a
successive query in an iterative algorithm.

But the main problem for fast kNN algorithms is posed by the
non-uniform distance measure. Efficient hierarchical methods are
based on geometrical properties, requiring a uniform distance met-
ric or complex adaptations to compensate for varying distance mea-
sures. These adaptations are not feasible for large values of k. For
a class-based distance measure, building a tree for each of the M
classes after suitable scaling and then merging M sets of k near-
est neighbours is an obvious solution. However, we want to use
fine-grained classes or even a smoothly varying distance measure,
where each point in space can give rise to a different scaling. In
this case, hierarchical algorithms are infeasible.

Because correct kNN searches have turned out to be too com-
putationally expensive, approximate kNN algorithms have received
a lot of attention [6]. In our case, errors in the selected nearest
neighbours can be recovered on a higher level by the time filter [2].
Hence we are satisfied with an approximate kNN algorithm.

3.2. Extended Roadmap algorithm

Our solution is an extended version of the Roadmap algorithm [7].
It is a hill-climbing search through a neighbourhood graph (or
“Roadmap”). All arcs are bidirectional, and each acoustic database
vector is a vertex. The general idea is that vertices that are similar
are linked. When looking for nearest neighbours of a query vec-
tor, the current solution is iteratively improved by moving to an
adjacent vertex that is closer to the query vector.

However, since two vectors that are very similar in acoustic
space can belong to classes with different associated distance mea-
sures, similarity has to take into account both the vector itself and
its associated distance measure. While the algorithm can cope with
a smoothly varying distance measure, strong differences would
make the error surface too complicated. Therefore, we use sub-
graphs for vectors having distinct associated distance measures.
For example, for the experiments in this paper, all vectors labeled
by the same HMM state number were taken together in one sub-
graph. Hence, for major differences in distance measure (different
HMM-state) a new subgraph was formed, while small differences
(different gender) within a subgraph were allowed.

Both the training algorithm and the search differ considerably
from the original algorithm [7], which was intended as a fast se-
lection of Gaussians in a Gaussian mixture HMM system.

3.2.1. The training algorithm

Because of the properties of our training algorithm, it is sufficient
to create the different subgraphs during the initialization, e.g. by
cyclic linking. For the rest of the training, the partitioning is of no
influence on the algorithm’s time complexity.

At each training iteration, three basic optimizations are per-
formed on each database vector in pseudo-random order:

1. A small number of nearest neighbours in its subgraph (we
used 8 in the experiments) are found for the vector, and
those are linked to it using the linking procedure described
below.

2. Another small number of randomly chosen vectors from the
same subgraph is linked using the same procedure.

3. The Roadmap is “cleaned” by removing redundant arcs.
Redundancy is also defined below.

One main difference with the original training algorithm is that
the number of neighbours per vector is not fixed. While it makes
basic operations more complicated, it has the definite advantage of
allowing us to keep the Roadmap partitioning fixed. In the original
algorithm, training could further break up graphs in uncontrolled
fashion. A disadvantage of using a variable number of arcs per
vertex is that the number of arcs might keep growing or might stay
too small. Hence in our training algorithm the average number of
arcs per vertex is controlled by adapting various parameters.

Linking is not done by simply adding a bidirectional arc. Rather,
a fast constrained greedy search is used to get as close as possible
to the target vertex starting from the source vertex. If the target
vector can be reached, no arc is added. Otherwise, another greedy
search is performed, this time starting from the target vector, try-
ing to reach the endpoint of the first greedy search. An arc is
added between the two endpoints. The greedy searches are con-
strained to consist of only a small number of steps, have a very
small backtracking depth and are not allowed to increase the dis-
tance to the target with more than a given factor (in fact this factor
can be smaller than one, hence constraining the search to only take
steps in the correct direction). The idea of linking in this way is
that the Roadmap is improved in function of the search, rather than
just in function of obtaining better locality.

Cleaning of the Roadmap is done by checking for each arc if,
without it, its connected vertices can still reach each other using
the same kind of constrained greedy search. If so, it is deleted.
This type of cleaning guarantees that the initial graph partitioning
is maintained.

3.2.2. The search

The search consists of two separate parts.

• In the first part, a greedy search is performed for each of
the subgraphs. The result is a small number of nearby vec-
tors from each of the subgraphs. The backtracking depth
of this search is small, causing very fast termination, but
more risk of errors. The initialization is given by the result
of the greedy search for the previous input frame. Often,
that initial solution will hardly need to be changed. The
time complexity of this phase is hard to calculate exactly.

I - 183

➡ ➡

Given some assumptions about the shape of the Roadmap,
and given the worst possible initialization for each query,
it is O(MD3 D

p
n/M), with M the number of subgraphs,

and D the dimensionality. In practice, the first phase is
computationally negligible compared to the second, espe-
cially because the initialization will often be near-optimal.

• In the second phase, the best vectors found in the first phase
are expanded to find k near neighbours. As in [7], we make
extensive use of hashtables to avoid calculating distances
more than once, but we also use a more efficient data struc-
ture consisting of an extra hashtable and two connected
heaps to store the k current best vertices. This way the
time complexity is limited to O(Dklog(k)). Note that the
second phase is no longer performed on each of the sub-
graphs separately, thus avoiding extra calculations neces-
sary to merge M sets of k candidate nearest neighbours.

The dominating second phase of the search is independent of n.
This property is very desirable from a theoretical point of view,
but in the practical case of our example-based speech recognizer,
using larger databases will mean calculating more neighbours, too.
We have not yet investigated the correct dependence of k on n, but
our experience tells us that it is definitely sub-linear.

3.3. Scaling experiments

While worst-case asymptotic behaviour is important for a theoret-
ical assessment of search algorithms, they can hide large constant
factors that dominate in practical finite-size experiments. Further-
more, the presented algorithm is an approximate kNN algorithm,
and it is easy to imagine that there is a trade-off between training
time, search error rate and search time. Therefore, we present a re-
alistic set of experiments to show the practical scaling behaviour of
the algorithm. All experiments are given on TIDigits acoustic data,
with the locally weighted distance measure that produced the best
result in table 1. The effect of the number of training iterations is
not examined, and kept constant at a level that takes approximately
1 CPU-day on a modern PC for the full training database.

In the first scaling experiment (top of fig. 1) the complete train-
ing database is used, and the number of requested nearest neigh-
bours k is scaled from 1000 to 25000. For the recognition exper-
iments in section 2.3, 15000 nearest neighbours were used. The
left vertical axis combined with the full line show that scaling be-
haviour is linear in k. The values on that axis are the mean exe-
cution times per query on a 1.7 GHz CPU. The right axis with the
dash-dotted line shows the percentage of nearest neighbours that
weren’t found. These misses occur mainly for the most distant
of all neighbours. In all observed cases, the best neighbour was
found.

In the second experiment (bottom of fig. 1) k is kept constant
at 10000, while the database is subsampled randomly and scaled
from about 100.000 frames to the full 1.516.015. The number of
calculated distances (which is exactly linear with execution time)
is shown to increase less and less with increasing database size.

4. CONCLUSIONS

We extended our example-based large vocabulary speech recog-
nizer with a more powerful distance measure. The relationship
with HMM modeling was clarified. A simple-proof-of-concept ex-
periment showed the need for non-uniform scaling and the validity
of the new distance measure. In all experimental set-ups, relative

0 0.5 1 1.5 2 2.5

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

m
ea

n
ex

ec
ut

io
n

tim
e

in
 s

ec
. (

fu
ll

lin
e)

1.5

2

2.5

3

3.5

4

4.5

5

number of requested near neighbours k

pe
rc

en
ta

ge
 o

f e
rr

or
s

(d
as

h−
do

t l
in

e)

0 2 4 6 8 10 12 14 16

x 10
5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5
x 10

4

nu
m

be
r

of
 c

al
cu

la
te

d
di

st
an

ce
s

number of vectors in database

Fig. 1. scaling k (top) and n (bottom)

improvements in word error rate of more than 35% were obtained.
Also, we addressed algorithmic problems that are introduced by
the new distance measure. An extended version of the Roadmap
algorithm was outlined and shown to perform well with increasing
problem size.

5. REFERENCES

[1] F. Itakura, “Minimum prediction residual principle applied to
speech recognition,” IEEE Trans. on ASSP, vol. 23, no. 1, pp.
67–72, February 1975.

[2] M. De Wachter, K. Demuynck, D. Van Compernolle, and
P. Wambacq, “Data driven example based continuous speech
recognition,” in Proc. EUROSPEECH, Geneva, Switzerland,
Sept. 2003, pp. 1133–1136.

[3] J.J. Odell, The Use of Context in Large Vocabulary Speech
Recognition, Ph.D. thesis, University of Cambridge, U.K.,
1995.

[4] K. Demuynck, J. Duchateau, and D. Van Compernolle, “Op-
timal feature sub-space selection based on discriminant analy-
sis,” in Proc. EUROSPEECH, Budapest, Hungary, Sept. 1999,
vol. III, pp. 1311–1314.

[5] J. R. Friedman, J. L. Bentley, and R. A. Finkel, “An algo-
rithm for finding best matches in logarithmic expected time,”
ACM Transactions on Mathematical Software, vol. 3, no. 3,
pp. 209–226, September 1977.

[6] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and
A. Y. Wu, “An optimal algorithm for approximate nearest
neighbor searching in fixed dimensions,” Journal of the ACM,
vol. 45, no. 6, pp. 891–923, November 1998.

[7] D. Povey and P. C. Woodland, “Frame discrimination train-
ing of HMMS for large vocabulary speech recognition,” Tech.
Rep. CUED/F-INFENG/TR332, Cambridge University Engi-
neering Department, 2000.

I - 184

➡ ➠

