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ABSTRACT

We combine Hidden Markov Models of various topologies and
Nearest Neighbor classification techniques in an exponential mod-
eling framework with a model selection algorithm to obtain sig-
nificant error rate reductions on an isolated word digit recognition
task. This work is a preliminary investigation of large scale model-
ing techniques to be applied to large vocabulary continuous speech
recognition.

1. INTRODUCTION

Increases in computational power, storage capacity, and training
data available for use by automatic speech recognition (ASR) sys-
tems, combined with the perception that the performance of such
systems has reached a plateau motivate us to consider modeling
strategies for speech recognition that, while more resource inten-
sive, have the potential to obtain significant reductions in error rate.

One old approach to acoustic modeling uses Dynamic Time
Warping (DTW) techniques to match segments of test utterances
to stored training data. DTW systems can capture long-range de-
pendencies [1] in the acoustic data, and can potentially adapt to
differences in gender, speaker, and accent by pinpointing, at de-
code time, similar data in the training set [2].

It is unrealistic, however, to expect to abandon the great ef-
ficiency and robustness offered by the smoothed out statistical
HMM models. Besides, HMM models can also capture long dis-
tance dependences if they have an appropriate topology. Early
work on fenonic baseforms [3] indicates such potential.

In this paper we take the modest steps of studying combina-
tions of whole world HMM models with dynamic time warping
procedures. One novelty of our approach is that we combine col-
lections of such models using maximum entropy, a.k.a. exponen-
tial modeling.

2. EXPERIMENTAL SETUP

Although our interest lies in large vocabulary continuous speech
recognition, all experiments described in this paper have been done
on single digits. We extracted them from continuous speech data
by doing forced alignments (using a state-of-the-art HMM) of the
reference scripts. We collected the sequences of feature frames
corresponding to the 11 digit words (from ’zero’ to ’nine’, with
the addition of ’oh’). The features are 39-dim vectors obtained by
splicing 9 consecutive 13-dim cepstra and applying LDA followed
by MLLT [4]. A subset of IBM internal telephony-band training
data yielded a total of 627806 sequences. In most experiments,
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Fig. 1. Multi-branch HMM.

we used the first 5K samples of each word as our training set, and
another set of 1K samples as a held out set. We also extracted in
the same manner a test set of approximately 500 samples of each
word from an independent test set. The training data consists of
large vocabulary utterances from a large variety of speakers and
accents. The test data consists of connected digits strings. Both
sets include landline and cellphone data.

We are aware that recognizing digits when the word bound-
aries are known is a much easier task than continuous speech
recognition (even though we give up useful phonetic context in-
formation). However, for the purpose of this paper, this setup gave
us the greatest flexibility in trying various algorithms, models and
model combinations.

3. HIDDEN MARKOV MODELS

We trained several HMM models for each word in the vocabu-
lary both using the small training set “5K” (with 5K samples per
word) and the full training set (with an average of 57K samples
per word). All models have a topology similar to that depicted
in Figure 1, namely a set of branches, each of which is a sim-
ple linear HMM with self loops. The observation probability dis-
tribution associated with each state is a full covariance Gaussian
mixture model. We built models in which the number of states in
each branch was fixed independently of the data as well as models
where the number of states varied with the branch.

We will denote the models in the fixed length case as
F (B, N, S), where B is the number of branches, N is the num-
ber of Gaussian components for each of the state models, and S
is the training set size. For those models, all branches of a graph
for word w have fixed length L(w) equal to the number of arcs
in a standard linear HMM model. For the variable length model
V (B, N, S) with B branches, we took the number arcs for branch
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b (1 ≤ b ≤ B) to be b ∗ L(w).
The observation distributions and the HMM transition rate

were both trained to convergence by the Baum-Welch algorithm
with no approximations. All the models were trained from a flat
start without reference to any auxiliary data such as baseforms or
a reference model. For the seed models we use uniform transi-
tion probabilities and a choice of initial hard state alignments. For
efficiency, the seed Gaussian mixture models for each states was
obtained by first applying a few rounds of k-means to the data
aligned to the state and then training with the usual Expectation
Maximization algorithm.

For a given model type we actually train Hidden Markov mod-
els on the training data for each of the 11 digit words separately.
We assume a uniform probability distribution for each of the words
so that the word hypothesized for a model type M (F (B,N, S) or
V (B, N, S)), given an acoustic data sequence X, is simply the
one that maximizes the probability p(X|w, M) of the HMM of
type M trained on data for word w.

Word error rates on the heldout and test sets for a variety of
models types built on the small training set are reported on in Ta-
ble 1, while Table 2 gives results for models trained using all the
training data. The reader will note that the simple linear (one-
branch) HMM models of standard length obtain the best or near
best performance, although he or she is cautioned not to draw too
strong a conclusion from this fact since our purpose in obtaining
these models was to obtain an eclectic, and hopefully complemen-
tary, variety of models to be combined later, rather than to search
for the best performing individual models. (Although we do be-
lieve the best linear models in Tables 1 and 2 to be a relatively
high quality baseline.)

model number branch number heldout test
name branches length gauss error error
F(5,1,5K) 5 fixed 1 2.43% 1.67%
F(10,1,5K) 10 fixed 1 2.48% 1.63%
F(1,5,5K) 1 fixed 5 2.79% 1.65%
V(3,2,5K) 3 vary 2 3.1% 1.9%
V(3,1,5k) 3 vary 1 3.4% 2.1%
V(3,3,5K) 3 vary 3 3.4% 2.3%
V(2,1,5K) 2 vary 1 3.5% 2.5%

Table 1. Word error rates for isolated digit recognition on held-
out and test data for Hidden Markov Models with B branches, N
Gaussians per state, and training set size S equal to 5K samples
per word. The model F (B,N, S) has a fixed number of states
per branch whereas V (B, N, S) has a varying number of states
per branch. Models are sorted in order of increasing error on the
heldout set.

4. NEAREST NEIGHBORS USING DTW

Dynamic Time Warping is a technique that allows the computa-
tion of distances between sequences of speech frames of different
lengths. The name covers a broad range of variations. The na-
ture of the dynamic programming (DP) recursion and the frame
distance metric are two choices that we examine in this section.
Another far-reaching decision is whether to keep all the train-
ing data, or only some representative samples. We follow the
former approach, since it is most naturally suited to the use of

model # branch # heldout test
name branches length gauss error error
F(1,20,57K) 1 fixed 20 0.46% 0.48%
F(1,10,57K) 1 fixed 10 0.61% 0.59%
F(20,2,57K) 20 fixed 2 0.65% 0.72%
V(3,2, 57K) 3 vary 2 0.65% 0.91%
F(1,5, 57k) 1 fixed 5 0.72% 0.79%
F(5,2, 57k) 5 fixed 2 0.72% 0.97%
F(10,1,57k) 10 fixed 1 0.76% 0.99%
F(5,1, 57k) 5 fixed 1 0.82% 1.15%
V(3,1, 57k) 3 vary 1 0.89% 1.27%
V(2,1, 57k) 2 vary 1 0.97% 1.27%

Table 2. Word error rates for models trained on all training data
(57K samples/word on average).
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Fig. 2. Dynamic Time Warping Recursions: Symmetric (solid
line) and Itakura constraint (dashed line).

“non-verbal” [2] information. We also investigate the use of mul-
tiple Nearest Neighbors (kNN) [5] to improve classification per-
formance.

The dynamic programming lattice is illustrated in Figure 2.
The first sequence (test) consists of I frames xi, and the second
(reference) sequence (template) has J frames yj . We consider two
recursions: the symmetric one and the Itakura constraint [6]. In
the symmetric case, the score for matching the first i frames of se-
quence 1 to the first j frames of sequence 2, is recursively defined
as

Si,j = di,j + min{Si−1,j , Si,j−1, Si−1,j−1},
where di,j is the distance from xi to yj , and

S1,1 = d1,1.

SI,J is the total DTW cost. In the Itakura case, we have

Si,j = di,j + min{Si−1,j , Si−1,j−1, Si−1,j−2}.
We consider several definitions of the frame distance di,j : |xi −
yj |, ‖xi−yj‖2, |C− 1

2 (xi−yj)|and (xi−yj)
′C−1(xi−yj). The

matrix C, is estimated as follows. For each pair of samples belong-
ing to each word in the vocabulary, the best warping (the sequence
of pairs (i, j)) is computed using the plain Euclidean distance. C
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Metric Non-normalized Duration-normalized
Mean absolute diff. 5.00% -
Mean abs. with C 3.98% 3.59%
Mean sqr. with C 3.59% 3.18%

Table 3. Comparison of frame distance metrics and effect duration
normalizations with symmetric DP recursion (Word error rates on
heldout set).

kNN technique Symmetric with Norm. Itakura constr.
1-best 3.18% 2.68%
voting 2.25% 1.92%
soft-voting 2.08% 1.86%
sum-of-exp. 2.02% 1.81%

Table 4. Effect of DP recursion and voting (Word error rates on
heldout set). Mean squared distance and C− 1

2 transform are used.

is estimated as the average of (xi − yj)(xi − yj)
′ over all pairs of

samples of every word. Since C is like a covariance matrix, the lat-
ter two types of the frame distance can be efficiently computed by
first applying the transform C− 1

2 (analogous to PCA with variance
normalization) to all test and reference frames, then computing the
mean absolute or mean squared distance. The first two rows of the
first column of Table 3 show the effect of the transform C− 1

2 on
the classification error when the mean absolute distance metric is
used. We observed a similar gain for the mean squared distance.

The symmetric DP algorithm permits the matching of se-
quences of any length. However, since each frame of each se-
quence must be matched to some frame of the other sequence, the
total DTW cost is dominated by the length of the longest of the
two sequences. This effect makes it harder to compare the match-
ing cost of a test sequence against templates of different durations.
We apply the following correction: d′

I,J = dI,J( I
max(I,J)

)α in an

attempt to make the cost d′
I,J depend on I . We use α = 0.7 but a

wide range of values give similar results. The dependence on I is
irrelevant for isolated word classification, but is important in a lat-
tice rescoring context, when paths with different numbers of words
(but totaling the same number of frames) have to be compared. The
last two rows of Table 3 show a significant improvement when du-
ration normalization is used (second column). They also indicate
that the mean squared distance metric (with PCA-like transform)
outperforms the mean absolute distance.

The Itakura recursion, since it matches each test frame exactly
once, does not require any duration normalization. It also gives the
best performance, as shown by the columns of Table 4.

The rows of Table 4 report the classification error rates ob-
tained with different kNN strategies. The first row corresponds to
k = 1, i.e. the 1-best hypothesis considered above. The second
row corresponds to voting with k = 10. Soft-voting is similar
to voting, except that each entry in the top k carries the weight
exp−βd where d is its matching score. We used β = 10−4 in these
experiments. Sum-of-exponentials differs from soft-voting in that
the k nearest templates of every candidate word are collected, in-
stead of the global top k nearest neighbors. The final score of word
w is Sw =

∑k
n=1 exp−βdn

w where dn
w is the matching cost of the

nth nearest template belonging to word w. Simple voting brings
a large improvement, while soft-voting and sum-of-exponentials
show modest additional gains.

Error rates on the test set will be reported in section 5.2 for
the best DTW system on the heldout set (which uses Itakura con-
straints, mean square frame distances, and sum-of-exponentials
scoring) taken alone and in combination with HMM systems.

5. MODEL COMBINATION

Our goal in this section is to combine subsets of word classi-
fiers discussed above to see if they provide complementary infor-
mation. Any word classifier C considered in the previous sec-
tions hypothesizes the word W for a given acoustic data sequence
X = (x1, ..., xI) to be the word that maximizes a score function
fC(X, W ). For an HMM model of type C, we take fC(X, W )
to be the log probability log pC(X|W ). We take the feature
fDTW (X, W ) to be the log of the sum-of-exponentials score.

Since our goal in the future will be to combine the models in a
way that can be easily incorporated in a continuous word recogni-
tion system, it seems like a good idea to try to combine the models
in a probabilistic fashion. A standard way to do that is to form a
posterior probability distribution which is a log linear combination
of feature functions:

pλ(W |X) =
e<λW ,f(X,W )>

Zλ(X)
, (1)

f(X, W ) = (fC1(X, W ), ..., fCT (X, W )), and (2)

Zλ(X) =
∑

W ′
e<λ′

W ,f(X,W ′)> . (3)

Here, f(X, W ) is a “feature vector” of dimension T , where T
is the number of model types (DTW or HMM based classifiers)
being combined. The denominator Zλ(X) is simply a factor to
normalize pλ as a posterior probability distribution for W .

Although other non-linear functions of the basic scores could
be used instead of, or in addition to, the ones we have chosen here,
the choice of log probabilities (and log sum-of-exponential scores)
allows us to loosely interpret the probability (1) as a weighted ge-
ometric mean of separate distributions. Consistent with this point
of view, we constrain all the weight to be positive, although the
results do not vary too much if negative weights are allowed.

In section 5.2 we will report results of maximum likelihood
classification according to distributions of the form (1), where the
weights λ = {λW } are chosen so as to maximize likelihood on
the heldout data set described in section 2. Readers familiar with
the language modeling literature may recall that exponential mod-
els trained to maximize posterior probability are also commonly
referred to as maximum entropy models [7]. This is because the
distribution (1) for the maximizing λ equals the distribution which
has maximum (conditional) entropy subject to a certain constraint.
In the language modeling case the features are typically all discrete
and there are specialized algorithms for performing the optimiza-
tion. In our case the features are continuous. We find that the
optimization proceeds readily using a generic quasi-newton search
algorithm with care taken to handle the numerics when summing
exponential of large (and occasionally infinite) values.

5.1. Model Selection

How can we make a judicious choice of which models to combine
that will reduce the total computational time required and also re-
duce the risk of overtraining? This problem is a special case of
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without DTW with DTW
combination heldout test heldout test
single 2.43% 1.67% 1.81% 1.45%
all 2.10% 1.40% 1.96% 1.42%
select 2.09% 1.42% 1.31% 1.09%

Table 5. Word error rates on training and heldout data for various
maximum entropy combinations of models trained on the small
training data set both including DTW (last two columns) and not
including DTW (first two columns). Types of combinations are:
“single” – best single HMM / DTW used alone; “all” – all HMM /
all HMM+DTW; “select” – results of algorithm in Figure 3.

what is known as the feature selection problem [8, 9]. In this pa-
per we propose a profoundly simple approach to feature selection
which captures an idealized strategy for making progress in gen-
eral. Code for the algorithm (in the matlab language) is presented
in Figure 3. The algorithm simply adds features one at a time, at
each step adding the greedy choice of feature whose addition give
the greatest improvement in error rate on the heldout set. The al-
gorithm terminates when no feature can be added which improves
heldout error rate. The function models to keep in Figure 3
takes as input a list of all models from which we want to se-
lect a kept subset. Models are represented as powers of 2 and
model combinations are represented as integers equal to the sum
of the binary powers for the models in the combination. The func-
tion wer train takes in a list of model combinations (a.k.a. a
vector of integers) and outputs the list of corresponding error rates.
The function delete deletes an element from a list.

function kept = models_to_keep(all_models)
candidates = all_models;
kept = 0;
while(length(candidates)>0)
[wer_new newI] = ...

min( wer_train(kept+candidates) );
if ( wer_new >= wer_train(kept) )

break;
end
kept = kept + candidates(newI);
candidates = delete(candidates,newI);

end

Fig. 3. Algorithm for selection of models to combine.

5.2. Results

Table 5 reports the result on the heldout data (used for training
exponential model weights) and the test data set for maximum en-
tropy combinations of various subsets of the DTW system and the
seven HMM models of Table 1, all of which were trained on the
small training data set. The exponential model features (3) were
taken to be logs of HMM likelihoods and logs of DTW sum-of-
exponentials scores. The first row reports error rates for individual
models; the second row reports result obtained by combining all
models (with and without DTW); and the last row reports results
for the subset of models chosen by our model selection algorithm
based on performance on the heldout set.

The following can be observed from the test results in Table 5:
(1) it helps to combine HMM systems; (2) the DTW system in

isolation performs better than any individual HMM system and in
fact about as well as any combination of HMM systems; and (3)
the combination of both DTW and HMM systems picked by the
model selection algorithm was the overall best system and signifi-
cantly outperforms the combination of all models.

Not shown in the table is the fact that the greedy feature selec-
tion algorithm found the model combination with absolute mini-
mum heldout error rate (out of 128 possible combinations), both
in the case when DTW was not included as well as when it was
required to be included. For the sake of any curious readers, we
note that, on the heldout set, the best combination of HMM mod-
els without the DTW system consisted of the first five models in
Table 2, while the best model subset to combine with the DTW
system consisted of the model F (10, 1, 5K) by itself.

Finally we report that word error rate on the test data of the
DTW system using all of the training data is 1.13%. This is sig-
nificantly worse than the best HMM system. We did not find any
combination of system that had better performance than the single
best HMM system (the first line of Table 2).

6. CONCLUSIONS

We have shown that Nearest Neighbor techniques can be signifi-
cantly enhanced by distance modeling, smoothed voting, and nor-
malization. We have also seen significant error rate reductions by
combining DTW and multi-branch HMM models using maximum
entropy techniques and a greedy model selection algorithm. We
view this work as a first step towards large scale models for large
vocabulary speech recognition.
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