
ABSTRACT 

Hidden Markov model-based speech recognition systems 
use supervised learning to train acoustic models. On 
difficult tasks such as conversational speech there has 
been concern over the impact erroneous transcriptions 
have on the parameter estimation process. This work 
analyzes the effects of mislabeled data on recognition 
accuracy. Training is performed using manually corrupted 
transcriptions, and results are presented on three tasks: 
TIDigits, Alphadigits and Switchboard. For Alphadigits, 
with 16% of the training data mislabeled, the performance 
of the system degrades by 12% relative to the baseline. 
On Switchboard, at 16% mislabeled training data, the 
performance of the system degrades by 8.5% relative to 
the baseline. An analysis of these results revealed that the 
Gaussian mixture model contributes significantly to the 
robustness of the supervised learning training process. 

1.  INTRODUCTION 

Conversational speech is difficult to transcribe 
accurately [1,2]. On such tasks there has been concern 
over the impact erroneous transcriptions have on the 
parameter estimation process, especially given the cost of 
generating highly accurate transcriptions. The initial 
Switchboard (SWB) transcriptions had a word error rate 
(WER) of approximately 10% [2]. When initial research 
systems reported WERs on the order of 50% for SWB, it 
was conjectured that transcription errors contributed 
significantly to this poor performance. A three-year 
project was initiated to produce transcription error rates 
below 1% [2]. To our surprise, after reducing the 
transcription error rate to 1%, overall acoustic modeling 
accuracy did not increase significantly [3]. Hence, in this 
paper, we investigate the impact of clean transcriptions on 
the supervised learning process. 

Hidden Markov model-based speech recognition 
systems use supervised learning to train acoustic models 
in automatic speech recognition [4]. Typically, these 
learning algorithms need a set of accurate word-level 
transcriptions that correspond to the input training speech 
data. Requiring a set of error-free transcriptions increases 
the time required to develop new applications and is one 
of the most expensive aspects of data collection [4]. Other 
sources of transcriptions such as closed captions are 
readily available but are seldom used because their 
transcription error rates are high. Experiments have shown 
that is possible to have reasonable performance using 
these types of erroneous transcriptions [5]. Significant 
work has not been done to analyze and understand the 
underlying reasons why traditional HMM-based training 
algorithms are robust to mislabeled transcriptions.  

2.  SUPERVISED LEARNING 

The details of model training using supervised learning 
techniques can be found in [6]. The output probability 
distribution at each state of an HMM is a continuous 
probability distribution typically modeled as a 
multivariate Gaussian distribution. The model parameters 
for each state, namely the mean and variance, are updated 
after every iteration. The mean calculation is given by: 
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where )(tLr
jm  is the state occupancy probability,  R  is 

the total number of observations, T  is the total duration 

of each utterance and or
t  is the observation vector for 

frame t of utterance r . The state occupancy value can 
also be defined as the probability of the input data 
belonging to the model given the current model 
parameters. If the input data matches the model closely, it 
is likely that the state occupancy value will be high, and 
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the data contributes more to the model reestimation 
process and vice-versa. 

3.  EXPERIMENTAL DESIGN 

To analyze the effect of mislabeled transcriptions on 
recognition accuracy, transcription errors were introduced 
in a controlled manner on three databases widely used 
within the community: TIDigits (TID), Alphadigits (AD) 
and Switchboard (SWB). Details about the experimental 
setup can be found in [7]. The experiments were 
performed using a publicly available speech recognition 
system [3]. Linguistically plausible errors were introduced 
in a random way designed to emulate how transcription 
errors occur in practice. Several methods were 
investigated for error generation, but all produced 
comparable results. A summary of the results for a range 
of recognition tasks is given in Table 1. 

It can be observed from Table 1 that transcription 
errors do not make a significant impact on any of the 
databases. For Alphadigits, at a 2% transcription error 
rate, the performance of the system was not affected. With 
16% of the data mislabeled, the performance of the 
system degrades by 12% relative to the baseline. Even for 
a complex database such as SWB, the word error rate 
degrades only by 3.5% (absolute) at a 16% transcription 
error rate. 

To further investigate this perceived robustness, 
simulated experiments were performed using two one-
dimensional overlapping Gaussian distributions [7]. The 
parameters of one Gaussian are estimated using a mixture 
of data generated from the in-class Gaussian and a 
percentage of data generated from a second, out of class 
Gaussian. The data was reclassified using an optimal 
decision boundary based on the estimated parameters, and 
probability of error calculated based on the estimated 
decision surface. These experiments produced results 
similar to those shown in Table 1 – parameter estimation 
was surprisingly robust to mislabeled data. Details of the 
experimental setup and results can be found in [7].  

Experiments were then conducted to analyze how 

acoustically similar (‘b’-‘d’) and dissimilar (‘aa’-‘s’) 
phones perform in the presence of transcription errors. 
The means and variances for these phones were obtained 
from actual speech data. In this case, statistics collected 
from the AD task were used. The results are tabulated in 
Table 2. It can be seen that the probability of error is high 
even at a 0% percent transcription error rate for 
acoustically similar phones. This is because the 
distributions for these phones have significant overlap.  

Note that as the transcription error increases the 
probability of error does not increase. In the case of 
acoustically dissimilar phones, the distributions have a 
small overlap and the probability of error is low at a 0% 
percent transcription error rate. As the transcription error 
rate increases, the probability of error marginally 
increases. This is due to the fact that Gaussian 
distributions tend to cluster around the mean of the data. 
Hence, even at a 20% transcription error rate, the estimate 
of the original distribution is not significantly different 
from the estimate of the original distribution for a 0% 
transcription error rate. In both the cases we see that 
corrupting the model does not increase the probability of 
error significantly. This behavior matches what was 
observed during recognition experiments on the three 
corpora previously described. 

4.  ANALYSIS 

To analyze the robustness of the training process in the 
presence of transcription errors, a subset of the 
Alphadigits database was used. This subset consisted of 
4,884 utterances chosen at random. From this set, 100 
utterances that had the word ‘o’ were chosen. In these 100 
utterances, the word ‘o’ was replaced with the word ‘i’. 
Utterances with correct transcriptions were added back so 
that the subset now had 4,984 utterances and a 
transcription error rate of 7.8%. The motivation for 
substituting the word ‘o’ with the word ‘i’ is that both 
words have one phone, ‘ow’ and ‘ay’ respectively, in their 
pronunciations. Hence a substitution at the word level is 
equivalent to a substitution at the phone level. 

The analysis was performed for all stages in the 
training process: monophone training, context-dependent Trans. Word Error Rate 

(TWER) 
Database 

Acoustic
Models 0% 2% 16% 

1 mixt. 3.8 4.0 5.1
TID 

16 mixt. 0.8 1.0 2.3
1 mixt. 31.9 32.3 36.2

AD 
16 mixt. 10.8 10.8 12.1

SWB 12 mixt. 41.1 41.8 44.6

Table 1. A summary of results for systems trained with varying 
amounts of transcription errors (substitution errors). Each cell 
contains the corresponding WER for a recognition system 
trained at the given TWER.

Probability of Error Data Error Rate 
(%) ‘b’-‘d’ pair ‘aa’-‘s’ pair 

0 44.1 6.84
4 44.1 6.89
8 44.1 7.25

16 44.1 7.70
20 44.1 7.87

Table 2. Probability of error for acoustically similar and 
dissimilar phones. Note that the probability of error does not 
increase significantly in either case.
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training and mixture training. The acoustic models are 
standard three-state HMMs with self-loops and transitions 
to the next state. In each state, Gaussian mixtures were 
used to model the underlying distribution. 

The results shown in Table 1 indicate that 
transcription errors do not degrade the performance of the 
recognition system significantly. Hence, the hypothesis is 
that the state occupancy values for the frames with 
erroneous data are very low and do not contribute to the 
model reestimation process. To verify this hypothesis, the 
state occupancy for the center state of the phone ‘ay’ was 
observed for the incorrect utterances (the utterances in 
which the word ‘o’ was replaced with the word ‘i’). 
Similarly, the state occupancy for the center state of the 
phone ‘ow’ was also observed for the correct utterances 
(the 100 correct utterances that were added later to the 
list). The state occupancies were analyzed for all 
iterations of flat start and monophone training. Also, the 
state occupancy values were normalized by the number of 
frames for which their values were greater than zero. The 
normalized state occupancy values for the center state of 
the model ‘ay’ and ‘ow’ corresponding to the incorrect 
and correct utterances is shown for all stages of flat start 
and monophone training in Table 3. 

It can be seen that the state occupancy values for the 
correct center state (corresponding to the model ‘ow’) are 
significantly higher than that of the incorrect center state 
(corresponding to the model ‘ay’). Also, it was observed 
that the number of frames for which the state occupancies 
were greater than zero is significantly more for the correct 
state than for the incorrect state. In the utterances with 
transcription errors, the erroneous data typically gets 
mapped to the silence model. This shields the center state 
of the ‘ay’ model from the erroneous data. The incorrect 
data that occurs when ‘ay’ is substituted for ‘ow’ is 
rejected during the training process due to its low state 
occupancy value. Hence, the model learns very little from 
the incorrect data. 

To verify how little the erroneous data contributes to 
the reestimation of the model (e.g., ‘ay’), the state 
occupancy of the center state of the model ‘ay’ was 
analyzed from 275 correct utterances. The state 
occupancy for the center state of ‘ay’ in these 275 correct 
utterances was observed to be 0.53 after normalization 
while the state occupancy of ‘ay’ from the incorrect 
utterance is 0.148. This shows that the incorrect data does 
not contribute to the overall reestimation process 

significantly since its weights are low. 
Similar experiments were performed during context- 

dependent training. The cross-word model ‘sil-ay+ey’, 
which had a transcription error rate of 16%, was chosen 
for analysis. Four out of 25 occurrences of this model 
were due to transcription errors. As in monophone 
training, one would expect the state occupancy values to 
be low for incorrect transcriptions and hence does not 
contribute significantly to the reestimation process. But, 
in the case of context-dependent training, each 
context-dependent model gets a smaller amount of 
training data compared to the monophone models. Hence, 
the percentage of incorrect data the model sees is likely to 
increase. 

It is possible that the incorrect data contributes more 
to the reestimation process and the models can become 
corrupted. In Table 4 we see that the state occupancy 
values for the correct portion of the data is significantly 
more than the incorrect portion. But due to a relatively 
high transcription error rate (16% in the case of the model 
‘sil-ay+ey’), the state occupancy values increase after 
every iteration for the state in the incorrect transcription. 
However, this is insufficient to corrupt the model 
reestimation process. 

During state tying, transcription errors for each model 
can change depending on the way the actual data was 
shared. After state tying is performed, the center state of 
‘sil-ay+ey’ is shared with other models. This increases the 
number of instances of correct data for this model from 25 
to 190 while the number of incorrect instances increases 
from 4 to 10. The transcription error rate for the model 

Iteration 1 2 3 4 5 6 7 8 9 10 11 12
 ‘ow’ 0.037 0.122 0.355 0.590 0.633 0.634 0.641 0.639 0.660 0.655 0.659 0.660
 ‘ay’ 0.037 0.057 0.078 0.150 0.150 0.173 0.159 0.153 0.143 0.153 0.155 0.151

Table 3. Average state occupancy values for the center state in the model ‘ow’ in the correct transcriptions and the model 
‘ay’ in the incorrect transcriptions during monophone training. The state occupancy values are higher for the correct 
transcription. This difference widen after each iteration. 

Average State Occupancy 
Correct 

Transcription 
Incorrect 

Transcription 
Iteration Before After Before After 

1 0.5223 0.5829 0.0794 0.1490
2 0.5808 0.5807 0.0871 0.0851
3 0.5827 0.5913 0.1201 0.0873
4 0.5772 0.5915 0.1461 0.0873

Table 4. Average state occupancy values for the model 
‘sil-ay+ey’ during context-dependent training before and 
after state tying. In both cases, the average state 
occupancy value for the model in the correct 
transcriptions is significantly more than those in the 
incorrect transcriptions.  
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‘sil-ay+ey’ was reduced to 0.05%. Training was continued 
and the state occupancies were observed for the center 
state occurring in the correct and incorrect transcriptions.  

The results are tabulated for the model ‘sil-ay+ey’ in 
Table 4. As before, the state occupancy value reduces 
after each iteration for the center state of the model ‘sil-
ay+ey’ in the incorrect transcriptions. It can also be seen 
that the state occupancy value for the state occurring in 
the correct transcriptions increases after each iteration. 
This is because the transcription error reduces after state 
tying and the model is now exposed to more clean data 
than it was before state tying. Hence, the model 
effectively rejects the incorrect data. 

The effect of transcription errors was also analyzed 
for mixture training using the same models as in context- 
dependent training. The results are tabulated in Table 5. It 
was observed that as the number of mixtures per state 
increases the state occupancy values decrease for the 
states updated by incorrect transcriptions while the values 
increase for states updated for correct transcriptions. As 
the number of mixtures is increased, the model tries to 
capture all the modalities in the correct portion of the data 
since correct data is present in much larger quantities. 
More details about experiments performed for analysis 
can be found in [7]. 

5.  CONCLUSIONS 

This paper has explored the robustness of supervised 
training algorithms to mislabeled data in speech 
recognition. The effects of different types of transcription 
errors were analyzed on three different databases: 
TIDigits, Alphadigits and Switchboard. HMM-based 
systems using Gaussian mixture models were shown to be 
robust to transcription errors. Individual transcription 
errors were shown to make an insignificant impact on the 
bias in the paramter estimates, and the estimation 
algorithms were shown to converge provided there were 
sufficient number of correct samples. Even high 
transcription error rates tend to be reduced in significance 
because these errors are split across a large number of 
parameters. Gaussian mixtures need a large amount of 
incorrect data to get corrupted. The process of iteratively 
training the models also adds more robustness to the 
acoustic models. 

This paper has shown that highly accurate 
transcriptions are not essential for training an acoustic 
model. It is possible to closely match the best 
performance by using other sources of transcriptions such 
as closed captions, provided there is ample data to 
overcome the deficiencies of the transcriptions. It would 
be interesting to quantify how much of these other sources 
of data are required to match a clean set of transcriptions 
in terms of system performance. For example, the system 
could be 90% accurate using 10 hours of clean training 
data on a database of interest. It is possible that this 
performance can be matched by using a significantly 
larger amount of noisy data. Quantifying the exact amount 
of noisy training data needed to match the performance of 
clean training data can be an interesting research area to 
explore in the future 
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Average State Occupancy 

Mixture 
Correct 

Transcription 
Incorrect 

Transcription 
1 0.5372 0.1488
2 0.5384 0.1404
4 0.5644 0.1282

Table 5. Average state occupancy values for the model 
‘sil-ay+ey’ after each stage of mixture training  
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