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ABSTRACT

Waveform quantization of speech using Gaussian mixture
models (GMMs) is proposed. GMMs are trained directly on
the speech waveform, and high dimensional vector quantiz-
ers (VQs) that efficiently exploit the redundancy are con-
structed based on the GMM parameters. Two types of
GMMs are studied. The complexity of the scheme is in-
dependent of the rate, and the rate can be changed without
retraining the VQ. A shape-gain structure improves perfor-
mance and robustness. Pre- and post-processing using spec-
tral amplitude warping further improves perceptual quality.
A 32-dimensionalVQ operating at 2 bits/sample reproduces
speech sampled at 8 kHz with a PESQ score of 4.2.

1. INTRODUCTION

Multi-rate audio codecs have received considerable atten-
tion lately. This is motivated by the advent of more flexi-
ble networks that allow operators to allocate variable band-
widths depending on user demands, and network condi-
tions. A technique for data compression based on Gaussian
mixture models (GMMs), that fits well in a multi-rate en-
vironment, is studied in this work. The compression capac-
ity and design flexibility have been demonstrated previously
for the speech spectrum source. Here we propose to use this
technique directly on the audio waveform.

Direct waveform quantization has been hindered by
the exponential growth in complexity in vector quantizers
(VQs) as the dimension and the rate increases. The work
in [1] spurred the interest for GMMs as a tool for analysis
and design of practical VQs. In [2] the competitive perfor-
mance, and ease of design when constructing source opti-
mized VQs based on GMMs was demonstrated. The de-
signs in [2] were based on random VQs which are highly
competitive, although computationally complex. A struc-
tured quantizer based on GMMs was suggested in [3] which
makes the complexity independent of the rate but at the
price of an increase in distortion. In [4] a method that
provides a trade-off between these two extremes was pre-
sented. For complexity reasons, and for conceptual simplic-
ity, we will in this work employ the technique of companded
GMM-VQ (CGMM-VQ) presented in [3].

We design and evaluate CGMM-VQs that operate on
vectors of dimensions 32 and 128. The quantizers are evalu-
ated at rates from 1 to 4 bits per sample. GMMs with uncon-
strained covariance matrices are used in the baseline system.
With the initial motivation to increase the dimension of the
VQs, we also study GMMs with auto-regressive (AR) co-
variance matrices. The virtues of AR GMMs is however not
improved performance as will be seen. The SNR of prac-
tical designs is contrasted with theoretical bounds obtained
via high rate theory. Spectral amplitude warping (SAW) and
a shape-gain structure are incorporated in the final design
which is evaluated in terms of PESQ scores.

2. GMM WAVEFORM QUANTIZATION

In the following, we model speech as a stochastic sequence
of samples {X(t)} which are blocked into a sequence of
K-dimensional vectors {X(n)}. In the following the time
index is sometimes dropped for ease of notation. The se-
quence of vectors is assumed to be stationary, and the pdf of
a vector is denoted p(x). Next consider a GMM pdf

pM(x) =
M∑

m=1

ρmpm(x), (1)

where pm is a K-dimensional Gaussian pdf with mean mm

and covariance matrix Cm. Further, Cm = VmΛmVm
T is

the eigenvalue decomposition, where Λm = diag(λm,1, . . .
λm,K). The total number of model parameters is M +
MK + MK(K + 1)/2. The model is often optimized to-
wards minimizing the Kullback-Leibler distance D(p||pM).

Given the model, a CGMM-VQ can be designed in-
stantly, and with any size. By designing a VQ for each
mixture component pdf, and creating the total VQ by merg-
ing the codevectors from each component, it is ensured that
the total VQ has a distribution of codevectors which fits
the source pdf. The encoding procedure is done in two
steps. First the speech vector is quantized by each of the
component quantizers. Transform scalar quantizers are em-
ployed as in [5], but here with companded scalar quantizers
which makes the computational complexity independent of
the rate. The M transform quantizers are designed to be
optimal for Gaussian sources with means {mm} and co-
variance matrices {Cm}. In the second step, the best vector
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among the output vectors from the transform quantizers is
searched for and an index is created. Next we give the de-
tails of the above procedure.

2.1. Companded mixture model VQ

We consider a B-bit, resolution constrained CGMM-VQ
that encodes each speech vector into an index i = ε(x),
i ∈ {1, . . . , N}, N = 2B . The decoder outputs a recon-
structed vector x̃ = δ(i). In the encoding, each source vec-
tor x is processed in parallel by the component quantizers
in three steps,

ym = Λ−1/2
m Vm

T(x − mm) (2)

um,k = φ(ym,k/cc) (3)

im,k = εm,k(um,k), (4)

for m = 1, . . . , M , k = 1, . . . , K . Here, εm,k is a
Nm,k = 2Bm,k level uniform scalar encoder with granular
region in the interval (0,1). The range of εm,k is the index
set {1, . . . , Nm,k}. Furthermore, φ is the Gaussian cumula-
tive distribution function for a scalar random variable with
unit variance. The operation in (2) transforms the incom-
ing vector (which is assumed to be Gaussian) to a vector of
i.i.d. Gaussians with unit variance, (3) implements the opti-
mal scalar compander for a Gaussian random variable (with
cc =

√
3). Next in the encoding, a candidate vector from

each component quantizer is reconstructed like

ũm,k = δm,k(im,k) (5)

ỹm,k = ccφ
−1(ũm,k) (6)

x̃m = VmΛ1/2
m ỹm + mm, (7)

where δm,k is the decoder corresponding to εm,k. The win-
ning candidate is x̃m∗ where m∗ = argminm d(x, x̃m) and
d(x, x̃) is some suitable distortion measure. Here d(x, x̃) =
(x − x̃)T(x − x̃). An index i∗ is output from the encoder,

i∗ = 1 +
m∗−1∑
m=1

2Bm +
K∑

k=1

(im∗,k − 1)
k−1∏
α=1

Nm∗,α, (8)

and transmitted over the channel. At the receiver, i∗ can be
uniquely decoded to obtain m∗ and {im∗,k}.

2.2. Quantizer design

The design of a CGMM-VQ is a two-step procedure. First a
parametric model pM(x), in our case a GMM, is optimized
to fit the source pdf p(x). An important design parameter is
the number of mixture components M . There is an obvious
trade-off between the accuracy of the model on one hand,
and computational complexity, and the risk of over-fitting
to training data on the other hand. Unfortunately, there are
no theoretical guidelines for the choice of M . Here, mod-
els with different number of components are trained, and

compared in terms of the performance of the resulting VQ,
cf Figure 1. The well-known EM-algorithm is used to fit a
GMM to the source pdf.

Given the model, we can instantly design a quantizer to
operate at any rate. The design amounts a bit allocation,
first among the mixture component quantizers, then among
the vector dimensions in each quantizer. Following [3], we
allocate bits among the component quantizers according to

Bm = B + log2

(ρmvm)k/k+2∑
j(ρjvj)k/k+2

, m = 1, . . . , M, (9)

where vm =
∏

λ
1/K
m,k . This formula is based on high rate

theory and the assumption that the components are well sep-
arated. When using the EM-algorithm however, there is no
explicit control of the individual components, and the as-
sumption of separated components is not valid. An alterna-
tive allocation which gives similar or better performance is
to simply assign Bm = B − log2 M , ∀m. Given {Bm} we
next allocate bits among the vector dimensions following
[5],

Bm,k =Bm/K +0.5 log2(λm,k/vm), k = 1, . . . , K. (10)

2.3. Theoretical analysis

With the aid of high rate theory, the performance of the pro-
posed quantizer can be partially assessed. We will lower
bound the distortion of a CGMM-VQ by calculating the ex-
pected distortion D = E[(x − x̃)T(x − x̃)] for a quantizer
with spherical encoding regions and with a VQ point den-
sity function γ = p

K/K+2
M

D = N−2/KG

∫
p(x)pM(x)−

2
K+2 dx, (11)

where G is the normalized second order moment of the
spherical encoding region. To calculate an upper bound on
D we can assume a random VQ with the same γ which
modifies the factor G in (11), cf. [6]. The distortion can be
evaluated using stochastic integration

D ≈ N−2/KG
1
T

T∑
n=1

pM(x(n))−
2

K+2 . (12)

Three things are worth pointing out. Firstly, the two bounds
bound the distortion of an optimal design (based on the
model which may not be perfect), and the bounds assume an
optimal encoding; we fulfill neither of these criteria. Sec-
ondly, caution must be used when comparing the bounds
to practical performance since they are only valid at high
rate. Thirdly, and in passing, we mention that the theoreti-
cal bounds can be used as a measure of model quality; the
distortion is minimized when D(p||pM) = 0. In Figure 1
the two bounds are compared to practice in terms of SNR.
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Fig. 1. Solid lines correspond to 32-dimensional full co-
variance CGMM-VQ, and dashed lines to 128-dimensional
AR CGMM-VQ. The lines with circles correspond to prac-
tical coders, and the lines without circles are the theoreti-
cal bounds from section 2.3. The coders operate on “raw”
speech vectors, at a rate of 4 bits/sample.

2.4. Towards a practical coder

The scheme presented so far is a rough and naive attempt at
speech compression. In order to improve the performance,
and increase the robustness we propose to use a shape-gain
VQ structure. We perform the shape-gain encoding open-
loop, i.e., the gain g =

√
xTx/K is quantized to g̃, and

the shape x/g̃ is quantized using the CGMM-VQ. The gain
quantizer is a 5 bit uniform scalar quantizer which encodes
the gain in a logarithmic domain. Incorporating shape-gain
improves PESQ from 3.1 to 3.6 for a 32-dimensional, 64
component CGMM-VQ operating at 2 bits/sample.

To further improve perceptual performance, SAW [7] is
incorporated. The analysis window is a 256 sample trape-
zoidal window with 96 sample slopes on each side, and
the overlap and add window is a 64 sample Hann window.
The spectrum is compressed using the square root function.
When the SAW transform and inverse alone is applied to
speech it results in PESQ scores at 4.4 (4.5 is the maximum
score). The performance of systems incorporating SAW and
shape-gain structure is reported in Table 1. The GMMs are
trained on pre-processed and gain-normalized speech.

3. AN ALTERNATIVE MODEL STRUCTURE
The GMMs used above have full covariance matrices, i.e.,
each Cm contains K(K + 1)/2 unique parameters. Diago-
nal covariance matrices is one alternative. They do however
tend to be less efficient than full covariance matrices when
GMMs with the same total number of parameters are com-
pared (especially when the number of parameters increases
[8]). Here we propose to use covariance matrices with an
AR structure. Each component now represents a zero-mean,
pth order AR Gaussian process X(t) = −∑

aiX(t − i) +
U(t) where the variance of U(t) is σ2. If the vector dimen-
sion is high, the pdf of a K-dimensional vector is a Gaussian
pdf with a K × K covariance matrix Cm = σ2(ATA)−1,
where A is a K × K lower triangular Toeplitz matrix

where the first column is (1, a1, . . . , ap, 0, . . . , 0)T. The
AR GMM has the same form as in (1), but with all com-
ponent mean vectors equal to zero, and with an AR covari-
ance structure. The AR GMM is completely specified by
the M + M(p + 1) parameters {ρ1, . . . , ρM , θ1, . . . , θM}
where θm = {σm, am,1, . . . , am,p}.

3.1. Auto-regressive companded mixture model VQ

The encoding procedure for an auto-regressive CGMM-VQ
is essentially the same as in section 2.1. Below, we discuss
the encoding in mixture component m (the procedure im-
plements the optimal transform coder for a Gaussian vec-
tor source with covariance matrix Cm when K is large).
For large K and p � K , the AR covariance matrices are
diagonalized by the Fourier transform, Cm = U#ΣmU.
The elements of the unitary Fourier matrix U are Uk,n =

1√
K

exp(−i2πkn/K), and Σm is a diagonal matrix with
the eigenvalues which equal the PSD of the AR process
sampled uniformly on the unit circle,

Σm = diag(Sm(0), . . . , Sm(2π(K − 1)/K)), (13)

Sm(ω) = σ2
m / |∑p

n=0 am,n exp(−iωn)|2 (am,0 = 1)
[9, Ch. 15.9]. Thus, the decorrelation in step (2) in the
encoding is replaced by y = Ux = DFT(x)/

√
K. This

produces a vector with K complex elements {ak + ibk},
k = 0, . . . , K − 1 (dropping the mixture component in-
dex for ease of notation). Assuming a Gaussian input
with covariance matrix Cm, the variances of the real and
imaginary parts are var(a0) = Sm(0), var(b0) = 0,
var(aK/2) = Sm(π), var(bK/2) = 0, and var(ak) =
var(bk) = Sm(2πk/K), k �= 0, K/2. Further, by the sym-
metry of the Fourier transform, ak = aK−k, bk = −bK−k,
k �= 0, K/2. Thus there are only K unique, real values to
quantize, y′ = (a0, a1, . . . , aK/2, b1, b2, . . . , bK/2−1). The
elements of y′ are normalized to have unit variance yield-
ing y′

m. The remaining steps of the encoding follow those
in section 2.1: the elements of y′

m are companded yielding
u′

m which is quantized by a set of scalar quantizers. The
decoder is modified accordingly. Note that the decorrela-
tion operation is common to all mixture components which
can result in lower computational complexity. The num-
ber of multiplications in the encoding procedure for an AR
CGMM-VQ is on the order of K log2 K+MK , and for full
covariance CGMM-VQ, MK2 + MK .

3.2. Design of an AR GMM VQ

For the more general case of a hidden Markov model
(HMM) using AR GMMs as state pdfs, the segmental K-
means algorithm has proven useful in optimizing the param-
eters to the speech source. Here, since we have a single state
HMM, the segmental K-means essentially reduces to the K-
means algorithm using the Itakura-Saito distortion [10].
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Given the model, the design of an AR CGMM-VQ fol-
lows the procedure in section 2.2. Assuming the mixture
components are well separated it can be shown that the op-
timal allocation between the mixture components follows
(9) but with λm,k = Sm(2π(k − 1)/K), k = 1, . . . , K .
Furthermore, for mixture component m, the scalar quan-
tizers that encode (the normalized and companded ver-
sions of) {ak}K/2

k=0 and {bk}K/2−1
k=1 are allocated Bm/K +

0.5 log2(Sm(2πk/K)/vm) bits each.

4. EXPERIMENTS

For the experiments, a training set and an evaluation set
(with no speaker appearing in both sets) were compiled
from the TIMIT database. The speech was resampled at 8
kHz. The training set contains 78 minutes of speech, and the
evaluation set consists of 10 sentences (34 s in total), spoken
by five male, and five female speakers. The GMMs were
trained on 70 000 vectors of speech from the training set.
The factor cc in the encoding and decoding was experimen-
tally tuned to maximize either SNR or PESQ for each model
at rate 2 (the same factor was used at the other rates). The
performance is measured in SNR = 10 log10 σ2

X/D (σ2
X

and D estimated in simulations), and the PESQ measure.
In all experiments, the dimension of the full covariance

GMMs is 32. Attempts to increase the dimension lead to nu-
merical instabilities in training and when using the models.
For the AR GMMs different dimensions were tested, and a
vector dimension of 128 gave the best results and is used
throughout. In Figure 1 the SNR is plotted as a function of
the total number of model parameters for systems operating
on “raw” speech vectors. It quantifies the suboptimality of
the design, and encoding, cf. section 2.3. AR models have
the highest potential as indicated by the theoretical curves,
but full covariance models perform better in practice. Also
note that the performance of a random VQ and a VQ us-
ing optimal encoding regions is almost indistinguishable
according to theory. In Table 1 PESQ scores for CGMM-
VQs operating on SAW pre-processed and gain-normalized
vectors are reported for systems using different number of
mixture components. At a rate of 2 bits/sample (which in-
cludes the overhead for gain quantization), full covariance
CGMM-VQ obtains a score of 4.2, and AR CGMM-VQ
obtains 4.1. The correlation structures that are possible to
model using the AR structure are limited, which explains
the slightly worse performance in that case. The computa-
tional complexity, and the number of model parameters are
lower however. A low number of parameters is important
in adaptive schemes were the model may be transmitted to-
gether with the compressed data. Finally, a comparison was
made with the Enhanced Full Rate (EFR) codec operating
at 12.2 kbits/s which resulted in PESQ scores of 4.1 for both
systems. Future work includes refinement and tuning of the
present system, generalization to HMMs to exploit inter-

Rate # full components # AR components
8 16 32 64 64 128 256 512

1 3.2 3.4 3.4 3.5 2.9 3.0 3.0 3.2
2 3.9 4.0 4.1 4.2 3.9 4.0 4.0 4.1
3 4.3 4.3 4.4 4.4 4.3 4.3 4.3 4.3

Table 1. PESQ scores for SAW-shape-gain CGMM-VQ us-
ing full covariancematrices (left), and AR covariance matri-
ces (right). Speech is sampled at 8 kHz. Rate in bits/sample.

frame dependency, tests on audio signals (here a model can
be trained, e.g., on a piece of music and included with the
compressed data; AR GMMs could be especially useful).

5. CONCLUSIONS

We have presented novel techniques for waveform compres-
sion of speech based on Gaussian mixture models. The high
dimensionality of the VQs makes it possible to efficiently
exploit the redundancy in speech, yielding objective results
comparable to those of more mature contemporary speech
coders. High rate theory suggests that the design and en-
coding procedure can be further improved.
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