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ABSTRACT

In this paper, a low-complexity, high-quality recursive vec-
tor quantizer based on a Generalized Hidden Markov Model
of the source is presented. Capitalizing on recent devel-
opments in vector quantization based on Gaussian Mixture
Models, we extend previous work on HMM-based quan-
tizers to the case of continuous vector-valued sources, and
also formulate a generalization of the standard HMM. This
leads us to a family of parametric source models with very
flexible modelling capabilities, with which are associated
low-complexity recursive quantization structures. The per-
formance of these schemes is demonstrated for the problem
of wideband speech spectrum quantization, and shown to
compare favorably to existing state-of-the-art schemes.

1. INTRODUCTION

High quality vector quantization of high-dimensional sources,
such as wideband speech, poses a number of challenges.
The large codebook sizes needed to achieve high quality on
these sources (on the order of 240 codepoints) make general
approaches such as full-search VQ impractical. Addition-
ally, since sources such as speech signals display consider-
able memory, recursive quantization becomes attractive. In
an ideal recursive coder, one would update the codebook at
every time step to reflect the conditional density based on
all previous data, imposing further constraints on the com-
plexity of the codebook design and quantization processes.

To cope with these issues, model-based quantization tech-
niques are attractive. These schemes work by building a
parametric model of the source and then employing a closed-
form quantization structure based on the model. Specifi-
cally, in [3], [4] and [6], Gaussian Mixture Models have
been utilized in such a scheme and shown to perform well,
as compared to conventional techniques such as MSVQ and
split VQ. Notably, the complexity of GMM-based VQ schemes
is rate-independent, and is low enough to permit codebook
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updates at each time step. Here, we aim to increase the
quality of these schemes through improved modelling tech-
niques, while incurring minimal increase in complexity.

In Section 2, we extend the model-based quantizer struc-
ture to the case of a Hidden Markov Model of the source.
The Hidden Markov Model is appealing in the case of recur-
sive coding because it provides a simple, recursive formu-
lation for the conditional density f(xn|xn−1, ..., x0). Thus,
we may exploit this model to design recursive coders that
utilize all past data, provided a codebook for the conditional
density can be either built on the fly or designed ahead of
time and stored. Ott utilized this idea in [1] for the case
that the data takes on discrete values, allowing a Huffman
code to be built on the fly at each time step. Goblirsch
presented a similar scheme in [2] for scalar-valued sources
with arbitrary distributions for each state. In Goblirsch’s
scheme, a MAP estimate of the state is used, resulting in a
switched-quantizer approach that allows the codebooks to
be designed ahead of time. Here, we will utilize the quan-
tization structure presented in [3] to extend Ott’s scheme to
the case of continuous vector-valued sources.

In Section 3, to better model the source, we develop
a generalization of the Hidden Markov Model that is mo-
tivated by the joint-GMM source model presented in [4].
This new model generalizes both the usual HMM and the
joint-GMM. We then show how to modify the HMM-based
quantizer to use this Generalized HMM model. Finally,
in Section 4, we evaluate the performance of these mod-
elling/quantization techniques on a database of wideband
speech. The new HMM-based quantizers are seen to out-
perform the corresponding GMM-based quantizers.

2. HMM-BASED RECURSIVE QUANTIZER

Hidden Markov Models are well known, and details can be
found in [5]. Here, we briefly describe them to introduce
notation relevant to the quantization problem. Let sn be a
Markov chain taking values in {1, ...,M} and denote the
state transition matrix for sn by A ∈ RM×M , with individ-
ual elements denoted by aij = P (sn = j|sn−1 = i). Let
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the density associated with state i be denoted by fi(x) =
N(x|µi, Σi), where x ∈ Rd. It should be noted that the
choice of a Gaussian Mixture Model for each state’s den-
sity would also work, with minor modifications, but here
we focus on the single Gaussian case for notational simplic-
ity. Denote by λ the set of parameters (A,µ,Σ, π), where
π is the initial state distribution. We will assume that the
Markov chain sn is irreducible and so a stationary distribu-
tion p̂ exists. Further, we will assume that π = p̂, so that
our model defines a stationary process.

Denote by αn the a priori state distribution at time n:

αn(i) ≡ P (sn = i|xn−1, xn−2, ..., x0) (1)

Let βn denote the a posteriori state distribution:

βn(i) ≡ P (sn = i|xn, xn−1, ..., x0) (2)

Given βn−1, αn may be obtained as follows:

αn(i) =
M∑

j=1

ajiβn−1(j) (3)

Similarly, given αn and xn, βn is obtained as follows:

βn(i) =
αn(i)N(xn|µi, Σi)∑M

j=1 αn(j)N(xn|µj ,Σj)
(4)

To initialize the recursion, α0 is set to the initial state
distribution. Finally, the density of xn conditioned on all of
the previous data is given by:

f(xn|xn−1, ..., x0) =
M∑

i=1

p(xn, sn = i|xn−1, ..., xn)

=
M∑

i=1

αn(i)N(xn|µi, Σi) (5)

Thus, the density of the current data xn, conditioned on
all of the previous data, is an order-M Gaussian Mixture
Model with mixture weights given by the state priors. Note
that only the weights of the mixture components change
with time, while the component means and covariances are
fixed. In this sense, the HMM generalizes the GMM from
a sequence of i.i.d. observations to a model with memory.
In [3], a vector quantization structure based on Gaussian
Mixture Models is presented. It is proposed to construct a
recursive quantizer based on an HMM by using this GMM-
based quantizer with mixture weights updated at each time
step. As discussed in [4], the complexity of the GMM-based
quantizer is low enough to permit updating the parameters
in this way. In order to maintain synchronization between
the encoder and decoder without sending side information,
it is required that the update to the mixture weights depend

only on past data. Examining the recursions for αn and
βn−1, we see that this is indeed the case, allowing us to
base the current model update on the previously quantized
vectors. The proposed recursive quantizer is seen in Fig. 1.
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Fig. 1: HMM-Based Recursive Vector Quantizer

The box labelled ”State Distribution Estimator” imple-
ments Equation (4), using x̂n−1, to estimate the a posteriori
state distribution at time n−1. The box labelled ”Construct
GMM” then uses this distribution to produce the parameters
of the Gaussian Mixture Model for the conditional density
f(xn|x̂n−1, ..., x̂0). In the basic case, this consists simply
of finding the a priori state distribution at time n, αn, using
Equation (3). The means and covariances are fixed in the
basic case. These parameters are then given to the ”GMM-
Based VQ” block, which operates as described in [3]. Note
that the encoder side also includes a decoder to produce x̂n,
in order to maintain synchronization with the decoder.

3. GENERALIZED HIDDEN MARKOV MODEL

In [4], a recursive vector quantizer was presented based on
a jointly-Gaussian Mixture model of the source. This joint-
GMM source model assumes that the source has a Markovity
of 1 and provides a very detailed estimate of the dependence
of the current sample on the previous one. However, it has
the disadvantage that it ignores any dependence on samples
farther back in time. Conversely, the usual HMM provides a
simple model of the dependence on all previous data, but is
not as flexible in describing the dependence on the previous
sample, which may be significant. It is proposed to gener-
alize the joint-GMM model by adding on a hidden Markov
structure, much in the same way that the usual HMM gener-
alizes the usual GMM. The idea here is that the joint-GMM
structure can exploit the strong dependence on the previous
sample, while the Markov structure will model longer-term
dependency. Generally, there is a family of ”hidden state”
models with the property that the conditional density of the
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current data given all previous data, f(xn|xn−1, ..., x0), is a
GMM. Such a model would have a hidden state sequence sn

that specifies the joint density of the current data xn and the
previous D−1 data points. If the data density is chosen to be
Gaussian, this family includes the usual GMM (sn is i.i.d.
and D = 1), the joint-GMM (sn is i.i.d. and D > 1) and
the usual HMM (sn is a Markov chain and D = 1). In [4],
the joint-GMM with D = 2 was demonstrated. Here, we
will use the model where sn is a Markov chain and D = 2,
and modify the HMM-based quantizer to use it.

Denote by xD
n the d ∗ D-dimensional column vector

formed by stacking xn, ..., xn−D+1. In this case, the den-
sity associated with state i is: f(xn, ..., xn−D+1|sn = i) =
N(xD

n |µi, Σi). Here, the parameters µ and Σ are of dimen-
sions d ∗ D and (d ∗ D) ∗ (d ∗ D). Note that, for a sta-
tionary source model, consistency of the marginal densities
dictates a certain structure for the model parameters. This
implies that the number of free parameters in this joint den-
sity model is not much greater than in the single-variable
case. The only new free parameters in this case are the
cross-covariance matrices. However, depending on the data
dimension and model order, this can still amount to a sig-
nificant increase in the number of free parameters.

Adopting this model changes the derivation of the con-
ditional density only slightly. In particular, the definitions of
αn and βn remain the same, and the update formula for αn

is unchanged. Let Nc(xn|µi, Σi, xn−1, ..., xn−D+1) denote
the conditional density of xn given that sn = i and condi-
tioned on the previous D − 1 pieces of data. As is well
known, this density is also a normal whose mean depends
on the previous data. The conditional covariance matrix is a
constant. The update formula for βn then becomes:

βn(i) = P (sn = i|xn, xn−1, ..., x0) (6)

=
p(sn = i, xn|xn−1, ..., x0)

f(xn|xn−1, ..., x0)

=
αn(i)Nc(xn|µi, Σi, xn−1, ..., xn−D+1)∑M

j=1 αn(j)Nc(xn|µj ,Σj , xn−1, ..., xn−D+1)

This gives the the conditional density of the current data:

f(xn|xn−1, ..., x0) = (7)
M∑

i=1

αn(i)Nc(xn|µi, Σi, xn−1, ..., xn−D+1)

Thus, the conditional density is again an order-M Gaus-
sian Mixture density. Note that in this case, the mixture
weights are adjusted by the HMM structure, as before, and
that the component means are adjusted at each step by the
jointly-Gaussian structure. Thus, use of this model requires
some small changes to the quantizer structure. In particular,
D previous data points must be retained for calculation of
βn−1. Additionally, the process of constructing the GMM

for use in the VQ now requires updating the means as well
as the mixture weights.

3.1. Some Notes on Complexity

As described in [3], the simple GMM-based VQ has a low,
rate-independent complexity. All of the recursive schemes
discussed here will share this baseline complexity, and the
added encoder-side complexity of operating a decoder for
synchronization purposes. Thus, the differences in com-
plexity arise from differences in how the update of the con-
ditional density parameters is performed. In the simple HMM
framework, the update consists solely of updating the mix-
ture weights using equations (3) and (4). Equation (3) is
a simple matrix-vector multiplication, while equation (4)
requires evaluating M multidimensional Normal densities
and normalizing. Utilizing the Generalized HMM structure
adds to this the additional complexity of updating the con-
ditional means at each time step. This requires M matrix-
vector multiplications and 2M vector additions, as described
in [4]. Note in particular that none of the schemes discussed
here requires changing the covariance matrices, meaning
that the matrix inverses and decompositions needed in the
Gaussian density evaluations and in the quantization struc-
ture itself can be computed ahead of time, and do not con-
tribute to run-time complexity.

4. PERFORMANCE ON SPEECH LSF
QUANTIZATION

To demonstrate the utility of the above HMM models in
a vector quantization context, several models were trained
and tested on speech LSF data. The database used con-
sisted of a training database of 350,000 16-dimensional LSF
vectors derived from multispeaker, wideband speech data
and an independent testing database of 15,000 LSF vectors.
Four models were trained: a plain GMM, a joint-GMM,
a plain HMM and a Generalized HMM. The plain GMM
and plain HMM were trained with the usual EM and Baum-
Welsh algorithms, respectively. The recursive GMM and
Generalized HMM were also trained using EM and Baum-
Welsh, but with the modification that successive vectors from
the training set were ”stacked” into vectors of size 32 prior
to training. The orders of the models were selected so that
they would all have an approximately equal number of free
parameters. The resulting models were then used to quan-
tize the test set, using the Log Spectral Distortion measure,
using the techniques described in [4] and above. The re-
sulting average distortion, as a function of bit rate, is shown
in Figure 1. It can be seen that the plain HMM coder out-
performs the plain GMM coder, and that the Generalized
HMM coder outperforms the recursive GMM coder. The
margin of improvement is around 1 bit in each case.
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Fig. 1. Quantizer Performance for Different Source Models
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Fig. 2. Quantizer Performance for Recursive Source Models

This experiment was repeated for the two best coders,
each with model order of 16. The results appear in Figure
2. Here, we see that the Generalized HMM coder can attain
an average LSD of 1dB at a bit rate of 40.5 bits per frame,
while the recursive GMM coder requires 42 bits per frame.

A histogram of the error for each coder at a rate of
40 bits per frame appears in Figure 3. The mean SD for
the Generalized HMM coder was 1.03dB, while the mean
SD for the recursive GMM coder was 1.09dB. As an out-
lier statistic, the percentage of quantized vectors with a SD
greater than 2dB was used. The Generalized HMM coder
produced 1.13% outliers, while the recursive GMM coder
produced 1.80% outliers. Thus, we surmise that the Gener-
alized HMM coder does a better job, both in terms of aver-
age distortion and spread of the distortion distribution.

5. CONCLUSIONS

In this paper, we have presented a general improved mod-
elling scheme and shown its utility in the problem of vec-
tor quantization. In particular, we have shown how to ex-
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Fig. 3. Error Histograms for Generalized HMM coder (top)
and Recursive GMM coder (bottom) at 40 bits/frame

tend GMM-based vector quantizers to the case of a Hidden
Markov model of the source. This results in a high quality
recursive vector quantizer with modest complexity. Also,
we have presented a Generalized Hidden Markov model
with improved modelling capabilities and shown how the
quantizer can be further modified to utilize this model of
the source. This recursive quantizer allows high quality en-
coding of continuous vector-valued sources with low com-
plexity by efficiently exploiting memory in the source. The
improved performance of these new schemes was illustrated
for the case of wideband speech spectrum quantization. They
were seen to outperform the previous GMM-based schemes,
which have been shown in [3] to compare favorably with
MSVQ and split-VQ schemes. Further issues to be investi-
gated in this area include the mitigation of channel errors,
the performance of models with deeper Markovity and the
online adaptation of the model parameters.
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