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ABSTRACT

In this paper we investigate split quantization of the LSF source
from an information theoretic perspective. It is a well known fact
that split quantization is inferior to unconstrained quantization, due
to the independent treatment of sub vectors. Here, we quantify
lower bounds for the split loss, and suggest conditional quantiza-
tion of splits as a method to reduce the losses. The investigation
is based on information theoretic estimates of performance, rather
than on the performance of actual quantization schemes.

Simulations for a 10-dimensional LSF source point at a loss of
around 8 bits if scalar quantization is performed, and a loss of ap-
proximately 2 bits for a 2-split quantization, both compared to 10
dimensional vector quantization. Furthermore, the results suggest
that these losses can be considerably reduced using conditional
quantization, down to as low as 0 to 2 bits.

1. INTRODUCTION

In current low to medium rate speech coders the speech signal is
often separated into a spectral envelope and a residual signal be-
fore coding. The spectral envelope is typically represented with
linear prediction coefficients (LPC) [1]. Commonly, these coef-
ficients are separately quantized using the line spectral frequency
(LSF) representation [2]. Quantization of LSF vectors typically
requires a substantial part of the total bit rate. In order to reduce
the required rate, vector quantization (VQ) of LSF vectors is often
employed. The potential of LSF VQ has been much studied, and
a substantial bit rate reduction, in the order of 10 bits, compared
to scalar quantization can be achieved, but complexity is a prob-
lem [3, 4]. In order to reduce complexity some constrained VQ
structure is often employed [5]. One such structure is split VQ [6].

In split VQ the vector to be coded is split into sub-vectors
before quantization. It is a well known fact that split VQ is in-
ferior to unconstrained VQ, due to the independent treatment of
sub-vectors. In this paper we use information theoretic measures
to quantify performance aspects of split quantization [7]. We quan-
tify the information theoretic split loss, and we study schemes to
reduce the losses of split quantization; conditional quantization of
the splits.

This paper is organized as follows. In Section 2, we discuss
information theoretic measures that constitute the base of this pa-
per. In Section 3, this is followed by a definition of split VQ, and
a discussion of how to apply the information theoretic measures
to split quantization. In Section 4, we discuss how to interpret the
proposed measures for practical split quantization, and in Section
5 we apply the proposed performance analysis to the LSF source.
Finally, we give some conclusions in Section 6.

2. INFORMATION MEASURES

Information theory is a valuable tool box for analyzing compres-
sion properties of random variables [7]. The information content,
or the uncertainty, of a discrete random variable, A, is given by
its entropy, H(A). For continuous random variables, there is a
corresponding quantity denoted differential entropy.

The differential entropy of a continuous random variable, X,
is defined as

h(X) = −
Z

Ωx

fX(x)log2 (fX(x)) dx, (1)

where Ωx is the support region of X. Just as the entropy for the
discrete case, the differential entropy is related to the shortest de-
scription length.

Another measure useful for the purposes of this paper is condi-
tional entropy. The differential entropy for the random variable X
given the random variable Y is referred to as conditional entropy,
and defined as

h(X|Y) = −
ZZ

Ωxy

fXY(x,y)log2

`
fX|Y(x|y)

´
dxdy

= h(X,Y) − h(Y). (2)

When studying pairs of random variables we can express the
information that one variable contains about another using the no-
tion of mutual information. The mutual information, I(X;Y),
between two random variables, X and Y, is defined as

I(X;Y) =

ZZ
Ωxy

fXY(x,y)log2

„
fXY(x,y)

fX(x)fY(y)

«
dxdy

= h(X) + h(Y) − h(X,Y). (3)

Mutual information possess the property I(X;Y) ≥ 0, with equal-
ity if X and Y are independent.

A more general concept than mutual information is the Kull-
back Leibler distance [7], also referred to as the relative entropy.
The Kullback Leibler distance, D (fX(x)‖gX(x)), is a descrip-
tion of the difference between the pdfs fX(x) and gX(x), defined
as

D (fX(x)‖gX(x)) =

Z
Ωx

fX(x)log2

„
fX(x)

gX(x)

«
dx. (4)

3. INFORMATION IN SPLIT QUANTIZATION

Here, focus is on a complexity reduction technique referred to as
split VQ, where a high dimensional vector, z, is split into a number
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of lower dimensional vectors before quantization,

z = [z1, z2, . . . , zN ]. (5)

The complexity reduction comes at the cost of an increased distor-
tion. A split VQ is suboptimal, due to the independent treatment
of sub-vectors.

Below, we discuss methods to evaluate the information theo-
retics losses for split VQ, and the gains of some potential remedies,
all based on the information theoretic measures discussed in Sec-
tion 2. In Section 5 we present results from applying the methods
discussed below to the LSF source.

3.1. Losses - Independent Treatment

The information theoretic loss for a split representation is due to
the independent treatment of sub-vectors. One way to quantify
this loss is to evaluate the amount of information that is treated a
multiple of times. For a two split representation, z = [x,y], this
can be evaluated by the mutual information, I(X;Y), c.f. Eq. (3).
In order to evaluate the cost for any number of splits we need to
generalize.

From Eqs. (3) and (4) it is obvious that the mutual informa-
tion corresponds to the Kullback Leibler distance between the joint
pdf, fXY(x,y), and the product of the marginals, fX(x)fY(y).
Generalizing to more than two random variables, we can define
the loss for an N split, L(split)

N , as the Kullback Leibler distance be-
tween the joint pdf, fZ(z), and the product of the split marginals,QN

i=1 fZi(zi),

L
(split)
N = D fZ(z)‖

NY
i=1

fZi(zi)

!

=

NX
i=1

h(Zi) − h(Z), (6)

where Z = [Z1,Z2, . . . ,ZN ]. Using this measure we can evaluate
the split loss for an arbitrary number of splits, N .

As is obvious from Eq. (6), we can interpret L
(split)
N as the dif-

ference in differential entropy between the sum of the split sources,
Zi, and the joint source, Z.

3.2. Remedies - Conditioning

The split loss, as measured with Kullback Leibler distance, can
be recovered using conditional representations. If split i, Zi, is
conditioned on splits Z1,Z2, . . . ,Zi−1, it can be shown, using
the chain rule for conditional entropy [7], that the Kullback Leibler
distance between the joint pdf, fZ(z), and the conditional product
pdf,

f
(cond)
Z (z) =

NY
i=1

fZi|[Z1,Z2,...,Zi−1](zi| [z1, z2, . . . , zi−1]), (7)

is equal to zero, i.e.

L
(cond)
N = D

“
fZ(z)‖f (cond)

Z (z)
”

=
NX

i=1

h(Zi|[Z1,Z2, . . . ,Zi−1]) − h(Z) = 0. (8)

A more practical approach is to condition split i, Zi, on split
i − 1, Zi−1. We can define the loss for an N split 1-step con-
ditioning, L

(cond−1)
N , compared to the joint representation, as the

Kullback Leibler distance between the joint pdf, fZ(z), and the
1-step conditional product pdf,

f
(cond−1)
Z (z) =

NY
i=1

fZi|Zi−1(zi|zi−1), (9)

as

L
(cond−1)
N = D

“
fZ(z)‖f (cond−1)

Z (z)
”

= h(Z1) +
NX

i=2

h(Zi|Zi−1) − h(Z). (10)

Another possible approach for conditioning is to condition
split i, Zi, on the right most element of split i − 1, Zi−1(Mi−1),
where Mi−1 is the number of elements in split i−1. We can define
the loss for an N split 1-step, 1-element conditioning, L

(cond−1,1)
N ,

compared to the joint representation, as the Kullback Leibler dis-
tance between the joint pdf, fZ(z), and the conditional product
pdf,

f
(cond−1,1)
Z (z) =

NY
i=1

fZi|Zi−1(Mi−1)(zi|zi−1(Mi−1)), (11)

as

L
(cond−1,1)
N = D

“
fZ(z)‖f (cond−1,1)

Z (z)
”

= h(Z1) +
NX

i=2

h(Zi|Zi−1(Mi−1)) − h(Z). (12)

4. PRACTICAL SPLIT QUANTIZATION

The simultaneous treatment of blocks of samples in VQ gives a
higher degree of freedom for choosing the reconstruction points
compared to split quantization, and thus better performance in
terms of incurred distortion. This advantage comes from the ability
of exploiting statistical dependencies among samples in the treated
vector, and the geometrical fact that operation in a high dimension
enables more efficient decision regions.

Above, we discussed information theoretic tools for quantify-
ing this advantage. Interpretation of these measures for practical
split quantization should be done with some care. Firstly, the loss
measures (L(split)

N , L
(cond)
N etc) are based on entropies, and are thus

based on the indirect assumption of a simultaneous treatment of an
infinite number of vectors. Secondly, the conditioning remedies do
not consider the practical need of conditioning on quantized data.

4.1. Finite Dimension

A practical VQ quantizes a single vector at each quantization in-
stance, while the proposed measures indirectly assume the simulta-
neous treatment of an infinite number of vectors. This fact means
that the proposed measures will differ from the loss in practical
split quantization. The proposed measures will act as lower bounds
for the split loss of practical quantization, as argued below.

According to Eq. (6) split quantization of a vector with in-
dependent components would not incur any loss at all. This is
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for two reasons not true in practical split quantization; local and
global sub optimalities. Locally, or intra split, the full dimensional
VQ1 enables quantization cell shapes, Voronoi shapes, that more
efficiently fills space, compared to the cell shapes of the lower di-
mensional split VQs. Globally, or inter split, the combination of
independent quantizers forces a rectangular structure of the layout
of the quantization regions. These VQ advantages are often re-
ferred to as the space filling advantage and the shape advantage,
respectively [8]. Neither of these two advantages come into play
for the proposed measures, due to the indirect assumption of a si-
multaneous treatment of an infinite number of vectors, an infinite
delay, for each split.

4.2. Conditioning on Quantized Data

Another aspect which should be considered is that in a real appli-
cation, the conditional coding need to be performed on quantized
data. Quantization reduces the information content, and thus

h(Y |X̂) ≥ h(Y |X), (13)

where X̂ represents a quantized version of X . Further, this means
that the losses for practical conditional quantization are larger than
suggested by the measures in Eqs. (8), (10) and (12). Thus, these
measures should be considered as lower bounds.

4.3. Conditional Coding in Practice

In practice, utilization of the conditional information can be per-
formed in a number of ways. Obviously, any method that can be
employed to exploit interframe dependencies [9], can also be used
to exploit inter split dependencies. The linear dependence among
splits can for example be extracted by utilization of vector linear
prediction [10]. To achieve a higher performance some non-linear
coding approach can be employed, e.g. [11, 12]. Other practi-
cal approaches for exploiting memory in between sub-vectors, in-
cluding delayed-decision approaches, have been proposed in e.g.
[13, 14, 15]. We do not study practical schemes for conditional
coding further in this paper, but it is an interesting topic for further
research.

5. LSF SOURCE MEASUREMENTS

Here, the information measures regarding split quantization, dis-
cussed in Section 3, are applied to a 10-dimensional LSF represen-
tation of the speech spectral envelope. Since an analytic expres-
sion for the 10-dimensional LSF pdf, fZ(z), is not available, we
have chosen to base the simulations on a Gaussian mixture model
(GMM) of the source pdf, fM

Z (z).
Below, we start with discussions on the simulation setup, the

source modeling, and the calculation of the information measures,
before presenting the actual results for the LSF source.

5.1. Setup

All modeling is based on the TIMIT speech database (clean speech),
down sampled to 8 kHz. A 10th order LPC analysis using the
autocorrelation method is performed every 20 ms, using a 25 ms
Hamming window. A fixed 10 Hz bandwidth expansion is applied

1Here, we are comparing the dimension of the entire vector to be quan-
tized and the dimensions of each split.
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Fig. 1: Modeling performance. Evaluation of log-
likelihood, J , as function of the size of the training
database, for a 128 mixture GMM, and as a function of
the number of mixtures, for a training database of 700 000
vectors. Both the results from closed evaluations, evalua-
tions using the same database as the GMM training, and
open evaluations are shown (based on 250 000 vectors).

to each pole of the LPC coefficient vector, and finally the LPC
vectors are transformed to the LSF representation.

All evaluation are based on a 128 mixture GMM. The training
was conducted using a database of 700 000 LSF vectors, extracted
from the train set in TIMIT. The modeling performance was eval-
uated using a database of 250 000 LSF vectors from the test set
in TIMIT. The evaluation of information measures was performed
using stochastic integration, based on 10 · 106 synthetically gener-
ated samples, c.f. Section 5.3.

5.2. Source Modeling

Evaluation of the information measures discussed above, requires
an expression for the source pdf, fZ(z). In this paper the joint
source pdf is estimated using a GMM[16],

fM
Z (z) =

MX
i=1

ρifi,Z(z), (14)

where M is the number of mixture components, and fi,Z(z) are
multivariate Gaussian densities.

Commonly the model parameters are found using the EM-
algorithm [17]. The EM-algorithm guarantees a monotonic in-
crease in log-likelihood,

J =
1

NDB
ln

NDBY
n=1

fM
Z (zn), (15)

for each EM-iteration, where NDB represents the size of the train-
ing database. To get an appropriate model we need to perform
enough EM-iterations, choose a model of appropriate order, and
finally use a large enough database. We have found that for our
purposes, a 128 mixture model trained on 700 000 vectors is satis-
factory. This choice is partly based on the modeling performance
shown in Fig. 1, where log-likelihood convergence as a function of
the number of mixtures and the training database size are shown.

5.3. Evaluation of Information Measures

Direct evaluation of the integrals in the expressions for informa-
tion theoretic measures are non-trivial for most source pdfs, in-
cluding GMM representations. One possible approach is to resort
to stochastic integration.
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Fig. 2: Information theoretic split quantization loss, com-
pared to unconstrained VQ, for a 10-dimensional LSF
source. The results are based on evaluation of informa-
tion theoretic measures, and should be considered as lower
bounds. The crosses (×) show the loss for standard split
quantization, c.f. Eq. (6). The circles (◦) show the loss for
1-step conditional split quantization, c.f. Eq. (10). The tri-
angles (�) show the loss for 1-step, 1-element conditional
split quantization, c.f. Eq. (12). Splitting has been per-
formed as: (5, 5), (3, 3, 4), (2, 2, 3, 3), (2, 2, . . . , 2), and
(1, 1, . . . , 1).

For example, in order to evaluate the differential entropy for a
random vector X using stochastic integration, we first note that the
integral expression in Eq. (1) can be rewritten as an expectation,

h(X) ≈ −E
h
log2

“
fM
X (x)

”i
, (16)

where the approximate equality is due to the usage of a model of
the source pdf. Based on the law of large numbers we can now
approximate the expectation with a sample mean,

h(X) ≈ − 1

N

NX
i=1

“
log2

“
fM
X (xi)

””
, (17)

where N is the number of samples used for evaluation. The sam-
ples, xi, are synthetically generated using the GMM. Alternatively,
the samples can be drawn from a database (open or closed). In our
case the discrepancy between these approaches are small, a fact
that can be interpreted as a confirmation of the modeling.

5.4. Results

In Fig. 2, we present results giving the information theoretic loss
for split quantization of a 10 dimensional LSF source, compared
to unconstrained coding, and potential gains of conditional cod-
ing. All results are based on the information theoretic methods dis-
cussed in the previous section, and should be considered as lower
bounds, c.f. Section 4.

The results show a split loss, L
(split)
N , c.f. Eq. (6), ranging from

2 bits loss for a 2-split representation to an 8 bits loss for scalar
representation. We can also see how conditioning on the split to
the “left” (L(cond−1)

N ), c.f. Eq. (10), reduces the split loss to a max-
imum of approximately two bits. Naturally, a 2-split conditional
representation performs without loss, c.f. Eq. (8). The results for
the less complex approach of conditioning on one element of the
split to the “left” (L(cond−1,1)

N ), c.f. Eq. (12), show a minimum loss
of approximately 1 bit. For a scalar representation the performance
coincide with the results according to, L

(cond−1)
N .

When interpreting these results one should remember the dis-
cussion in Section 4. Another source for “errors” is the pdf mod-
eling. Remembering this, we can notice that the estimated loss
for scalar quantization compared to unconstrained VQ, L

(split)
10 , of

8 bits, agree reasonably well with the 10-12 bit loss that can be
found studying the literature [4, 3].

6. CONCLUSIONS

The main contribution of this paper is the use of information theo-
retic tools to bound losses regarding split quantization and condi-
tioned split quantization compared to unconstrained VQ.

The results suggest that for a 10 dimensional LSF source, a
large part of the loss due to split quantization can be recovered
using conditional quantization. If an effective conditional coding
can be implemented, a scalar quantization can essentially suffice.

7. REFERENCES
[1] M. R. Schroeder and B. S. Atal, “Code-excited linear prediction

(CELP): High-quality speech at very low bit rates,” in Proc. ICASSP,
1985, vol. 2, pp. 937–940.

[2] F. Itakura, “Line spectrum representation of linear predictive coeffi-
cients,” Jour. of the Acous. Soc. of Am., vol. 57 Supplement, no. 1, pp.
S35, 1975.

[3] K. K. Paliwal and W. B. Kleijn, “Quantization of LPC parameters,”
in Speech Coding and Synthesis, pp. 433–466. Elsevier Science Pub-
lishers, Amsterdam, The Netherlands, 1995.

[4] P. Hedelin and J. Skoglund, “Vector quantization based on Gaussian
mixture models,” IEEE Trans. Speech and Audio Proc., vol. 8, no. 4,
pp. 385–401, 2000.

[5] A. Gersho and R. M. Gray, Vector Quantization and Signal Compres-
sion, Kluwer Academic Publishers, Boston, 1992.

[6] K. K. Paliwal and B. S. Atal, “Efficient vector quantization of LPC
parameters at 24 bits/frame,” IEEE Trans. Speech and Audio Proc.,
vol. 1, no. 1, pp. 3–14, 1993.

[7] T. M. Cover and J. A. Thomas, Elements of Information Theory, John
Wiley & Sons, New York, NY, 1991.

[8] T. D. Lookabaugh and R. M. Gray, “High-resolution quantization
theory and the vector quantizer advantage,” IEEE Trans. Inf. Theory,
vol. 35, no. 5, pp. 1020–1033, 1989.

[9] T. Eriksson, J. Lindén, and J. Skoglund, “Interframe LSF quantization
for noisy channels,” IEEE Trans. Speech and Audio Proc., vol. 7, no.
5, pp. 495–509, 1999.

[10] V. Cuperman and A. Gersho, “Vector predictive coding of speech at
16 kbits/s,” IEEE Trans. Comm., vol. 33, no. 7, pp. 685–696, 1985.

[11] A. Gersho, “Optimal nonlinear interpolative vector quantization,”
IEEE Trans. Comm., vol. 38, no. 9, pp. 1285–1287, 1990.

[12] T. Eriksson and F. Nordén, “Memory vector quantization by power
series expansion,” in Proc. IEEE Workshop on Speech Coding,
(Tsukuba, Japan), 2002, pp. 141–143.

[13] F. K. Soong and B-H. Juang, “Optimal quantization of LSP parame-
ters,” IEEE Trans. Speech and Audio Proc., vol. 1, no. 1, pp. 15–24,
1993.

[14] M. Xie and J-P. Adoul, “Fast and low-complexity LSF quantization
using algebraic vector quantizer,” in Proc. ICASSP, 1995, vol. 1, pp.
716–719.

[15] M. Y. Kim, N. K. Ha, and S. R. Kim, “Linked split-vector quantizer
of LPC parameters,” in Proc. ICASSP, 1996, vol. 2, pp. 741–744.

[16] R. A. Redner and H. F. Walker, “Mixture densities, maximum likeli-
hood and the EM algorithm,” SIAM Review, vol. 26, no. 2, pp. 195–
239, 1984.

[17] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” Journal of the Royal
Statistical Society, vol. 39, pp. 1–38, 1977.

I - 160

➡ ➠


