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ABSTRACT
In this paper, Gaussian mixture (GM) models are used to design

variable-dimension quantizers according to a weighted distortion

criterion. A general method for combining a variable-to-fixed di-

mension transform, with GM modeling and quantization, is pro-

posed. The method provides a convenient and efficient way to

encode the amplitudes in a sinusoidal speech coder. Quantizers

designed according to the proposed scheme are evaluated both ac-

cording to weighted distortion criteria, and with respect to a high-

rate bound approximation of the distortion. Informal listening tests

suggest that the amplitudes can be encoded without subjective loss

in a wideband, harmonic coder, at a rate around 40 bits per frame

(for the amplitudes only).

1. INTRODUCTION

The dimensionality of the amplitudes and phases in a harmonic si-

nusoidal speech coder is time-varying. This is because the funda-

mental frequency f0 is time varying, and the number of harmonics

is inversely proportional to f0. The dimensionality can be quite

large, and varies over a wide range. In a wideband (16 kHz sam-

pling frequency) coder, for example, the dimensionality can easily

range from 20 up to above 130. It is therefore non-trivial to vec-

tor quantize the parameters in an efficient and convenient manner.

An optimal VQ approach would involve having one fixed dimen-

sion codebook for each possible dimension [1], which would cost

much with respect to storage requirements, but also impose a com-

plex training problem. A very large amount of training data would

be required.

A common method to approach the problem with varying di-

mensionality is to transform the variable-dimension vector with

dimension d into a fixed dimension m, prior to coding. It may be
the case that m is larger or smaller than d, and the decoder con-
verts the resultingm dimensional vector to the original dimension
d. Many different variable-to-fixed dimension transforms have
been proposed. In [2], a variable-dimension vector quantization

(VDVQ) approach is suggested, where the frequency axis is di-

vided into “frequency bins” and each parameter is mapped to its

closest bin to form a fixed-dimension vector. A discrete all-pole

model is used in [3] to model the spectral envelope in between

the harmonics using a fixed number of parameters. In [4], sam-

ple conversion techniques are used to obtain fixed dimensionality.

It is shown in [5] that all linear dimension conversion techniques,

such as the ones in [2] and [4], but also simple zero-padding and

truncation techniques, can be treated as special cases of a general

approach for linear dimension conversion, denoted variable sized

non-square transform (NST).

This work is supported by the Swedish strategic research program Per-
sonal Computing and Communication (PCC).

In this work, NST is adopted, but instead of using trained

codebooks, a variable dimension quantization scheme, based on

Gaussian mixture models (VDGMMQ), is proposed. Quantization

based on Gaussian mixture models has received a lot of attention

lately, and GM models have for example found use for theoretical

evaluation [6] and efficient implementation [7] of vector quantiz-

ers.

The paper is organized such that first, a general approach to

variable dimension coding based on GM models is presented, then

a specific, computationally efficient scheme is proposed for coding

of sinusoidal amplitudes in a harmonic speech coder.

2. VARIABLE DIMENSION GMMODELING

In NST, a variable-dimension vector x with dimension d, is con-
verted to a vector y with fixed dimensionm according to

y = TTx, (1)

where T is a transformation matrix with dimension d × m. For
a linear transform with orthonormal basis functions TTT = I,
where I is the identity matrix, andm ≥ d, it holds that

x = Ty. (2)

There are many transformations with orthonormal basis func-

tions available. Examples are the discrete cosine transform, the

Karhunen-Loeve transform, the VDVQ approach from [2], and

also simple zero-padding (ZP). The VDVQ and ZP transforma-

tion matrices (which are employed in this study) are for example

given by [5]:

[
TT

VDVQ

]
i,j

=

{
1, i ≤ j m

d
< (i + j)

0, otherwise
(3)

[
TT

ZP

]
i,j

=

{
1, i = j
0, otherwise.

(4)

The GM-approach proposed in this paper is based on modeling

fixed-dimension vectors, y, with Gaussian mixtures

fY(y) =

M∑
i=1

ρ
(i)
Y f

(i)
Y (y), (5)

where ρ
(i)
Y , i = 1...M are the component weights, summing up to

unity,
∑

ρ
(i)
Y = 1. Each density, f

(i)
Y (y), is multivariate Gaussian

with mean vector µ
(i)
Y and covariance matrix C

(i)
Y . Using (2), the

parameters of a GM model for X, fX(x), can now be expressed

in terms of the parameters of fY(y), since µ
(i)
X = Tµ

(i)
Y and

C
(i)
X = TC

(i)
Y TT.
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3. QUANTIZATION BASED ON THE GMMODEL

In speech coding, a weighted distortion criterion is highly desir-

able in order to exploit perceptual effects. The weighted distortion

between an original variable-dimension vector x, and its quantized
counterpart x̃ is expressed

D = (x − x̃)TW(x − x̃). (6)

Assuming that it is possible to decomposeW = W
1
2

T
W

1
2 , then

D = (xw − x̃w)T(xw − x̃w), (7)

where xw = W
1
2 x. Let us for a moment focus on one particular

mixture component, i. If x is Gaussian with mean vector µ
(i)
X and

covariance matrixC
(i)
X (denoted x ∼ N(µ

(i)
X ,C

(i)
X )), then

xw ∼ N(µ
(i)
Xw

,C
(i)
Xw

) = N(W
1
2 µ

(i)
X ,W

1
2 C

(i)
X W

1
2

T
). (8)

The covariance matrix of xw,C
(i)
Xw
, is decomposed such that

C
(i)
Xw

= W
1
2 TC(i)

y TTW
1
2

T
= V(i)Λ(i)V(i)T, (9)

where V(i) is an orthonormal eigenvector matrix, and Λ(i) is di-

agonal with the eigenvalues ofC
(i)
Xw
on the diagonal. By letting

z(i) = V(i)T(xw − µ
(i)
Xw

) = V(i)TW
1
2 (x − T(i)µ

(i)
Y ), (10)

a variable z(i) ∼ N(0,Λ(i)) is created. Furthermore,

(z(i) − z̃(i))T(z(i) − z̃(i)) = (11)

(V(i)Txw − V(i)Tx̃w)T(V(i)Txw − V(i)Tx̃w) = D

due to (7) and thatV(i)V(i)T = I. Minimizing the l2-norm in the
coordinate system of Z(i), is hence equivalent to minimizing (6).

3.1. Outline of the quantization scheme
The quantization scheme suggested here operates in the coordinate

systems of Z(i), i = 1, . . . , M , where scalar quantizers and level
allocation over both mixture components and dimensions are em-

ployed. An incoming variable-dimension vector x is transformed
into all theM Z(i)-coordinate systems, and is quantized with the

corresponding quantizers. The general encoding and decoding

steps are outlined below. In the next sub-section, a complexity

reduced version is presented.

3.1.1. The encoder

Given an incoming variable-dimension vector x, a weighting func-
tionW (the weighting function may be constant, or data depen-

dent), and a transformation matrix T, the encoding steps are:

• Eigenvalue decomposition, cf. (9).
• Form z(i) = V(i)TW

1
2 (x − Tµ

(i)
Y ), i = 1, . . . , M .

• Allocate quantization levels. Each mixture i is assigned
l(i) = [ρ(i)L] levels, where L is the total number of lev-
els assigned to the current vector. Each dimension is then

coarsely assigned l
(i)
k levels according to

l̂
(i)
k = max

(⌊(
l(i)

) 1
d

√
Λ

(i)
k,k/σ2

⌋
, 1

)
, (12)

where σ2 is the geometric mean of the diagonal of Λ(i).

Based on the coarse assignment, on Λ(i), and on tabulated

distortions for the N(0, 1) variable, a greedy approach in
line with [1, p.234] is taken to make adjustments such that∏

k l
(i)
k is close to, but below, l

(i).

• Quantize the components of z(i) using the level allocation,

and a tabulated, pdf-optimized quantizer for the N(0, 1)
variable.

• Select the best candidate component, i∗, and form a joint
codeword for i∗ and the indices of the scalar quantizers.

3.1.2. The decoder

Given an incoming codeword index for z, a weighting function
W, and a transformation matrix T, the decoding steps are:

• Eigenvalue decomposition, cf. (9).
• Perform level allocation as described above.
• Decode z̃ using the level allocation and the received code-
word index.

• Form x̃ = W− 1
2 Vz̃ + Tµ

(i∗)
Y

Themixture index, i∗, does not require separate transmission, since
it is implicitly given by the partitioning of the z-codebook.

3.2. Complexity reduction
In the general case described, both the encoder and the decoder

need to perform the eigenvalue decomposition (9). Under certain

conditions this is not necessary. First of all, Y can be modeled

with diagonal covariances, C
(i)
Y . This is common procedure in

Gaussian mixture modeling, and it has been noted that correla-

tion within data can still be captured in the model, provided a

sufficiently large number of mixtures is used [8]. Moreover, W
may be diagonal. This is the case in the application at hand, but

also in many other speech processing applications such as speech

spectrum coding [6]. Finally, if T is the VDVQ (3) or the ZP (4)

transformation matrix, C
(i)
Xw
is diagonal, such that V(i) = I and

Λ(i) = W
1
2 TC

(i)
y TTW

1
2

T
. In these cases, T can be seen as a

“selector” matrix, choosing the appropriate dimensions of C
(i)
y to

use, so that when forming C
(i)
Xw
fromW and C

(i)
Y , matrix multi-

plication is avoided.

Another way to reduce the computational complexity of the

encoder, is to search only theM ′ < M best candidate components

according tomax
i

(
f

(i)
X (x)

)
in the encoding process.

4. PRACTICAL EVALUATION

The variable-dimension coding scheme proposed in this paper was

developed for use in a wideband (sampling frequency fs = 16 kHz)

harmonic speech coder called the Sinusoidal Voice Over Packet
Coder (SVOPC) [9]. In SVOPC, blocks of the linear prediction
(LP) residual r(n) are modeled using a harmonic sinusoidal model

r(n) =
d∑

k=0

ak sin(2πk
f0

fs
n + φk), n = 0 . . . N − 1, (13)

where the parameters are: the fundamental frequency f0, an am-

plitude vector a = [a1, . . . , ad]T (ak > 0), and a phase vector
φ = [φ1, . . . , φd]T. The number of harmonics, or the dimension-
ality of a and φ, is determined by f0 such that d = �fs/(2f0)�.
In this study, focus is on coding amplitudes a, from voiced

frames, or rather amplitude shapes x= a/σ, where σ =
√

aTa/d,
with the proposed GM based scheme, in a gain-shape VQ approach

[1]. The encoding of the other parameters is treated in [9].

The weight matrix, W (cf. (6)), is similar to the one used

in [5]. The diagonal elements are
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Wk,k =

∣∣∣∣ A(z/γ1)

A(z)A(z/γ2)

∣∣∣∣
2

z=e
j2πk

f0
fs

, (14)

where A(z) is the LP prediction filter, γ1 = 0.9, and γ2 = 0.7.
The TIMIT database [10] was analyzed with the SVOPC en-

coder, and a training database containing 97 587 variable-dimen-

sion amplitude residual vectors with corresponding weight matri-

ces, was created. Similarly, a test database with 6 160 vectors,

disjoint from the training database, was extracted.

Coders designed according to the techniques proposed in this

paper, were trained, and evaluated with respect to the weighted dis-

tortion criteria (6), but also with respect to a weighted parameter-
to-noise ratio (WPNR) measure

WPNR = 10 log10

(
xTWx

(x − x̃)TW(x − x̃)

)
, (15)

both averaged over the test database. The ZP transformation was

compared to the VDVQ transformation using quantizers based on

GM models with 1,8, and 32 mixture components. The GM mod-

els were estimated with a version of the Expectation Maximization

(EM) algorithm, modified such that only the model parameters cor-

responding to the non-zero components of a training vector y are
updated (cf. the modified GLA-training in [2] and [5]). According

to figure 1, the VDVQ transformation is superior, but the advan-

tage is smaller (less than 1 bit) for higher order GMM quantizers.

Therefore, the computationally more efficient zero-padding trans-

form was employed for the remainder of the experiments.

According to the weighted distortion measure (at the rate 50

bits/frame), it is possible to save in the order of 20 bits/frame by

employing a 32-mixture quantizer compared to the one-mixture

case (which is equivalent to having one scalar quantizer designed

for each dimension). According to the weighted PNR measure,

the gain is in the order of 10 bits. Informal listening tests indi-

cate that subjectively, the gain is somewhere in between, and that

the amplitudes can be encoded transparently (in the sense that the

quantization does not introduce audible distortion) in SVOPC us-

ing around 40 bits/frame (for the amplitudes only).
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Fig. 1. Average weighted distortion and parameter-to-noise ratio
versus the number of bits used to encode each frame with VDG-

MMQ based on the ZP (solid lines) and the VDVQ (dashed lines)

transforms. The weights are normalized such that trace(W) = 1.

An evaluation of the reduced complexity scheme suggested in

section 3.2, can be found in figure 2. The results suggest that there

is little to be gained by searching more than the 6-8 most likely

quantizers.

-12

-14

-16

-18A
v.
d
is
to
rt
io
n
[d
B
]

1 8 16 32M ′

16 bits

25 bits

50 bits

Fig. 2. Average distortion versus the number of searched compo-
nentsM ′ for the rates 16, 25, and 50 bits/frame.

5. THEORETICAL EVALUATION

Following the work presented in [6], an approximate bound of the

high-rate distortion is now derived. Compared to [6], the frame-

work here is quite different. In [6], the weighting matrix W is

dependent on the source vector to be quantized, x. Moreover, the
dimensionality d is fixed. Here, the weighting matrix is determined
by the LP coefficients, cf. (14), and d varies from 20 up to 132,
see figure 3. In order to be able to apply the theory from [6], an

20 39 65 132
d

5000

10000

15000

Fig. 3. Histogram illustrating the spread of dimensionality when
analyzing the TIMIT database with the SVOPC encoder.

assumption is made thatW depends solely on a auxiliary random

variable, U, independent of X. The performance at two common
dimensions, d = 65 (the most common when processing the whole
TIMIT database), and d = 39 is studied. Given a dimension d, and
an outcome u ofU, the high-rate distortion can be approximately
bounded

DHR|u � C(d)

N2/d

∫
Rd

fX(x) |W(u)| 1d λ(x)−
2
d dx, (16)

where λ(x) is the point density of the quantizer, N is the number
of quantization levels,

C(d) =
d

d + 2
V

− 2
d

d , where Vd =
2π

d
2

dΓ(d/2)

is the volume of a d-dimensional sphere with radius 1. Given a
GM model fM(x) ofX, it is possible to expressDHR as

DHR � C(d)

N2/d
EU

[
|W(u)| 1d

] ∫
Rd

fX(x)λ(x)−
2
d dx, (17)

where the optimal λ(x) = f
d/(d+2)
M (x)/

∫
Rd f

d/(d+2)
M (x)dx. The

integral of (17) can be approximated numerically by means of

stochastic integration as described in [6], and the expectation over

U is replaced by an average over a test database. The whole
TIMIT database contains 24 265 voiced 65-dimensional vectors,

and 17 684 of those were used for training, the rest were saved for

evaluation. The corresponding numbers for the 39-dimensional

case were 20 163 and 14 697, respectively. For the experiments,

fM(x) is represented by 128-component GM models. 32-mixture
VDGMMQs were compared to the bound, but also to quantizers
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trained solely on the 39 or 65-dimensional data. Results are pre-
sented in figures 4 and 5. Compared to quantizers trained on fixed

dimensional data, not much is lost (in the order of 1 bit) when com-

paring to the proposed scheme. Compared to the high-rate bound

on the other hand, the difference is in the order of 20 bits.

VDGMMQ
39d GMM
HR
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Fig. 4. Evaluation using 39-dimensional vectors from the TIMIT
database. 32-mixture quantizers designed with the proposed

method are compared to the high-rate bound and to quantizers

trained solely on 39-dimensional data.
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Fig. 5. Evaluation using 65-dimensional vectors from the TIMIT
database. 32-mixture quantizers designed with the proposed

method are compared to the high-rate bound and to quantizers

trained solely on 65-dimensional data.

6. DISCUSSION

A general scheme for combining the variable size non-square trans-

form as formulated in [5] with Gaussian mixture modeling and

quantization, is proposed. For the ZP or VDVQ transforms, the

scheme provides a convenient and computationally efficient way

to encode sinusoidal amplitudes in a wide-band harmonic speech

coder.

In a fixed-rate scenario, and according to weighted distortion

criteria, some 10-20 bits can be saved per frame by employing a

32-component model instead of a one-component model. Infor-

mal listening tests indicate that in a sinusoidal coder (SVOPC),

the residual amplitudes can be encoded without introducing addi-

tional distortion at a rate around 40 bits/frame (for the amplitudes

only).

The VDGMMQ scheme is also evaluated in a more theoretical

sense. Focusing on two common dimensionalities, it is observed

that the performance of VDGMMQ is within one bit from a quan-

tizer designed especially for that particular dimension. This indi-

cates that not much is lost by using only one model for all dimen-

sionalities. An attempt is also made to compare the performance of

the VDGMMQ scheme to a high-rate bound approximation of the

distortion. The results indicate that, at a high rate, the performance

of a 32-mixture VDGMMQ is some 20 bits away from the bound.

The high-rate bound approximation is based on the assumption

that the source vectors and their corresponding weights are inde-

pendent, which is of course not completely true. Furthermore, the

present implementation of VDGMMQ is based on scalar quantiz-

ers. By introducing a union of quantizers (a lattice), it is probably

possible to approach the bound approximation (at the expense of

increased computational complexity). It is however interesting to

note that the distortion-rate curves for the bound and the practical

quantizers have the same slope.

It might seem tempting to consider using GMmodels with full

covariance matrices as in e.g. [7]. But with a weighted distortion

criterion, it is then necessary to perform an eigenvalue decompo-

sition per coded vector, cf. (9), increasing the computational com-

plexity of the scheme significantly. Furthermore, estimating the

full covariance matrices based on the variable dimension data is a

non-trivial task.

In the scope of this work, the VDGMMQ scheme is evaluated

in a fixed-rate scenario. The scheme is however well suited for

variable-rate applications. The level allocation is performed “on-

the-fly” on a per-vector basis, based on a bit quota assigned to

each vector. Moreover, the complexity of the coder is essentially

independent of the rate.
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