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ABSTRACT 

This paper proposes a feature extraction method that represents 

both the periodicity and aperiodicity of speech for robust speech 

recognition. The development of this feature extraction method 

was motivated by findings in speech perception research. With 

this method, the speech sound is filtered by Gammatone filter 

banks, and then the output of each filter is comb filtered. 

Individual comb filters designed for each output signal of the 

Gammatone filter are used to divide the output of each filter into 

its periodic and aperiodic features in the sub band. The power 

suppressed by comb filtering is considered to be a periodic 

feature, whereas the power of the residue after comb filtering is 

considered to be an aperiodic feature. This method uses both 

features as the feature parameters for automatic speech 

recognition. A preliminary experiment using a five vowel 

recognition task designed to compare the proposed approach 

with the conventional MFCC-based feature extraction method 

shows that the proposed method improves vowel recognition 

rates by as much as 14.7 % in the presence of pink noise or a 

harmonic complex tone interferer. An evaluation experiment 

undertaken using the Aurora-2J database (Japanese noisy digit 

recognition database) to compare the proposed approach with 

the MFCC-based conventional (baseline) feature extraction 

method shows that the proposed method reduces the word error 

rate by as much as 59.62 %, with an average value of 18.21 %. 

1. INTRODUCTION 

After Davis and Mermelstein reported that Mel-frequency 

cepstral coefficients (MFCCs) provided better performance than 

other features in 1980 [1], the MFCC has been widely used as 

the feature parameter for automatic speech recognition (ASR). 

However, the MFCC is not robust enough in noisy environments, 

which suggests that the MFCC still has insufficient sound 

representation capability. This has created a need for feature 

extraction methods designed to represent more robust features.  

Most of these methods are based on findings related to the 

psychology or physiology of the human auditory system e.g. 

GSD [2], PLP [3], EIH [4], ZCPA [5], and ALSD based on GSD 

[6]. These methods aim to simulate the speech processing of the 

human auditory system, and most focus on the neural firing 

cycle or some similar periodicity. From the engineering 

viewpoint, SBCOR [7] also focuses on periodicity, especially on 

the center frequency of the sub band filter, in a way similar to 

GSD or ALSD. Since most of these methods have the advantage 

of representing the periodicity, they can improve ASR 

performance in noisy environments. Recently, psychological 

research has also revealed that the human auditory system is 

very sensitive to the harmonicity that is related to the periodicity 

of sound [8].  

However, these feature extraction methods have no 

advantage when it comes to representing aperiodic sound, 

besides they lose aperiodic information about quasi- or non-

periodic sound. 

By contrast, speech perception research has revealed that 

the human auditory system is also sensitive to aperiodicity. In 

concurrent vowel recognition research, de Cheveigné et al. [9] 

showed that the target vowel was perceived more easily when 

the interferer vowel was harmonic rather than inharmonic sound. 

This result suggests the existence of a mechanism similar to the 

comb filter for canceling the harmonicity of sound in the human 

auditory system, and that the human auditory system may 

perceive the target vowel after harmonic canceling. Therefore, it 

is conceivable that the human auditory system may represent 

both the harmonic i.e. periodic feature and the residue after 

canceling the harmonicity i.e. aperiodic feature, which deviates 

from the dominant periodicity. Recently, Ishizuka and Aikawa 

[10] showed that very small fundamental frequency (F0) 

fluctuations of vowels improve human vowel identification. 

Their results also support the importance of aperiodicity. 

However, in terms of engineering, methods of employing both 

periodicity and aperiodicity have not been well studied except 

by Jackson et al. [11].  

This paper proposes a feature extraction method that 

represents both periodic and aperiodic features for each sub band 

using Gammatone filter banks and comb filters. Unlike previous 

studies [11], our method can improve the ASR performance in 

noisy environments without precise F0 estimations from clean 

speech or voicing detections. The proposed method is described 

in detail in section 2. In section 3, a preliminary experiment 

confirms that the proposed method improves the vowel 

recognition rates in the presence of interferers. In addition, an 

experiment with the Aurora-2J database (Japanese noisy digit 

recognition database) shows that the proposed method can 

reduce the word error rate in real noise environments.

2. METHOD 

Figure 1 shows a block diagram of our proposed method. In the 

first step, the input speech is divided into sub band signals by 

Gammatone filter banks [12]. The center frequencies and 

bandwidths for each filter in the filter banks are decided in terms 

of the equivalent rectangular bandwidth (ERB) scale. In our 

example, we use 24 filters whose frequency characteristics are 

shown in Fig. 2. In the second step, the output signal for each 

filter is divided into frames with a certain temporal length, e.g. 

30 ms, and are shifted a certain temporal length, e.g. 10 ms. In 

the third step, the dominant periodicity is detected in each frame. 

The periodicity is calculated using the same method as that used 

in the autocorrelation method for F0 estimation. The method 
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calculates the autocorrelation function of the signal in the frame 

and searches for the maximum peak of the function within the 

search range e.g. from 80 to 200 Hz. In the fourth step, the 

signal in the frame is comb filtered using the periodicity detected 

in the third step. The characteristic of the comb filter is given by 

H(z), where n indicates the period with the maximum value 

detected in the third step.  

nzzH 1)(

In the fifth step, the power suppressed by the comb filtering and 

the power of the residue signal in the frame after the comb 

filtering are calculated as the sum of the square of the signals. 

The power suppressed by the comb filtering is calculated as the 

difference between the signal powers before and after the comb 

filtering. After the fifth step, the power suppressed by the comb 

filtering is considered to be the periodic feature, and the power 

of the residue signal is considered to be the aperiodic feature. 

Then, the powers across the sub bands at the same frame shift 

point are combined for each feature and considered to be vectors. 

Figure 3 shows the output power patterns from Gammatone filter 

banks (i.e. similar to excitation patterns) and the vectors of its 

periodic and aperiodic features obtained after analyzing a speech 

sentence with the 48-channel Gammatone filter banks and the 

30-ms frame shifted by 10 ms. As seen in Fig. 3, the periodic 

features have a power pattern that well represents stable 

periodicity, whereas the aperiodic features show the fluctuations 

of sound that deviate from the periodicity, such as sound onset, 

rapid frequency or amplitude changes in a frame, more clearly 

than the excitation pattern. In the final step, each power vector 

calculated in the fifth step is discrete cosine transformed into 

cepstral coefficients. We use the transformation shown below, 

where N is the number of Gammatone filters, mj is the power 

vector for filter number j, and ci is the i-th coefficient. 
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This transformation is the same as that used with the MFCC 

method. These coefficients are calculated for each feature, and 

only certain low order coefficients (e.g. the first to 12th 

coefficients) are used as the feature parameters for ASR. Then, 

both features are combined as the feature parameter, that is, if 

the coefficients from the first to 12th order are used then the 

total number of feature parameters is 24. 

The key to this method is the representation of both 

periodic and aperiodic features. In addition, the periodicity in a 

channel is calculated in a more adaptive manner compared with 

Figure 1: Block diagram of the proposed method. 
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Figure 2: The frequency characteristics of 24-channel 

Gammatone filter banks. 

Figure 3: The excitation patterns i.e. the output powers from 

Gammatone filter banks (top), and the periodic (middle) and 

aperiodic features (bottom) of the Japanese ‘mada seisiki ni 

kimatta wake de wa nai no de’ read by a male speaker. The 

dark color indicates the power intensity in the region. The 

periodic feature well represents the power of the stable 

periodicity, whereas the aperiodic feature clearly represents the 

power changing part e.g. sound onset and formant transition. 
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GSD [2] or SBCOR [7] which only focus on the center 

frequency of the band pass filter. Our method is similar to the 

method proposed by Jackson et al. [11] as regards the key points. 

However, the first step of their method depends strongly on the 

accuracy of the pitch-scaled harmonic filter (PHIF), and so the 

effect of any failure to decompose the harmonicity in the first 

step may become very large. Therefore, in their experiment, they 

used F0 values estimated from clean speech data to decompose 

the periodicity and aperiodicity of noisy speech data. By contrast, 

because our method employs a band pass filter before dividing 

the input speech into periodic and aperiodic sound, it is expected 

to have such advantages as being able to recover a failed 

harmonicity estimation and to cope with an interferer whose 

energy is not distributed evenly in the frequency region. Such 

failures in some channels do not affect the other channels, so our 

method can correctly extract speech features in channels with 

high local signal to noise ratios (SNRs). Therefore, our method 

does not need clean F0 estimation. 

Our method also can be regarded as an enhanced MFCC 

method in terms of sound representation capability. When Mel-

scale filter banks are used instead of Gammatone filter banks, 

the sum of the periodic and aperiodic features in each channel 

provides the same representation as the MFCC. However, the 

division into two features is expected to reduce the influence of 

the power pattern distortion in noisy environments. In addition, 

the proposed approach is expected to improve robustness since 

the representation it provides reflects properties that the MFCC 

cannot deal with because of the sound onset and rapid frequency 

changes in a frame with an aperiodic feature. 

3. EXPERIMENTS 

3.1. Preliminary vowel recognition experiment 

To evaluate the proposed method, we first conducted a 

preliminary experiment. The vowel recognition rates in the 

presence of pink noise or a harmonic complex tone interferer 

were measured at various SNRs. We measured the robustness by 

comparing the rates obtained with the proposed method and a 

conventional MFCC method. In this experiment, we used the 

hidden Markov model (HMM) as a pattern classifier. The 

proposed method uses 24-channel Gammatone filter banks, a 30 

ms frame shifted by 10 ms, and 12-order coefficients for each 

feature i.e. 24-dimension feature parameters. By comparison 

with the proposed method, the MFCC method uses 24-channel 

Mel-scale filter banks, the same frame length and shift as the 

proposed method, and 12-order coefficients. In addition, the 

MFCC method uses dynamic features ( MFCC), and the 

dimension of the feature parameters was 24. 

The training speech data consisted of 105 sentences from 

JNAS Japanese speech corpora, which are sentences extracted 

from a newspaper database and read by a male speaker in a clean 

environment. 64-Gaussian mixture monophone HMMs were 

trained using HTK [13]. The test speech data were five Japanese 

vowels /a/, /i/, /u/, /e/, and /o/ extracted from the training data, 

which were correctly recognized by the trained HMM in a clean 

environment. The test set of vowels, whose shortest length was 

50 ms, were randomly extracted from the training data, and 

1,191 vowels were used for the test. These vowels were used as 

isolated vowels, that is, each test sound included only one vowel. 

Test sounds were generated by adding pink noise or a harmonic 

complex tone interferer to the test speech data at SNRs of 20, 10, 

and 5 dB. The harmonic complex tone consisted of a 100 Hz 

pure tone and its 50 harmonics whose powers decreased at -3 

dB/oct., that is, the same as the pink noise. The F0 of the 

harmonic complex tone interferer was constant at 100 Hz. The 

vowel recognition rates were measured through a single vowel 

recognition task. We used the Japanese speech recognizer Julian 

[14] with a network grammar that allows sentences containing 

only one of the vowels. The speech condition was closed, and 

the interferer conditions were open. 

Figure 4 shows the results for each interferer. In both 

interferers at all SNRs, the vowel recognition rates obtained with 

the proposed method were always higher than the rates obtained 

with MFCC+ MFCC. The maximum improvement in the 

recognition rates was 14.7 %.

As shown in Fig. 4, although the feature parameters 

provided by the proposed method were static parameters 

(without deltas), the experimental results showed that the 

proposed method is more robust in terms of vowel recognition in 

the presence of pink noise or a harmonic complex tone interferer 

than MFCC+ MFCC, which includes dynamic feature 

parameters. This result confirms that the proposed method can 

improve ASR performance in the presence of interferers. 

3.2. Noisy digit recognition experiment with Aurora-2J 

We also conducted an evaluation experiment with the Aurora-2J 

Japanese noisy digit recognition database. The evaluation 

category was 5 because only the feature extraction process was 

changed. We measured the robustness by comparing the word 

accuracies obtained with the proposed method and baseline 

feature parameters i.e. 12-order MFCCs and a log power, and 

their deltas and accelerations (39 dimensions). The baseline 

scripts were used unchanged for training and testing. That is, we 

used 16-state 20-Gausiaan mixture HMMs as a pattern classifier. 

The proposed method used the same Gammatone filter banks, 

frames, and 12-order coefficients as in section 3.1 i.e. 24-

dimension feature parameters. In addition, the dynamic features 

(delta parameters of the coefficients calculated in the same way 

as the MFCC) were used, and the total dimension of the feature 

parameters was 48. In this paper, only clean training HMMs 

were used throughout the recognition experiments. 

Figure 5 and Table 1 show the averaged word accuracies 

with the baseline MFCC-based features and with the proposed 

features, and the reduction in the word error rate (WER) from 

the baseline features realized by the proposed method. The 

Figure 4: Vowel recognition experimental results. The vowel 

recognition rates in the presence of pink noise (left) and a 

harmonic complex tone (right). The abscissa indicates SNRs, 

and the ordinate indicates the vowel recognition rate. 

40

50

60

70

80

90

20 10 5

Signal to noise ratios (dB) 

V
o
w

e
l 
re

c
o
g
n
it
io

n
 r

a
te

 (
%

) 

Pink noise Harmonic complex tone

Proposed 
method

MFCC 

+ MFCC

20 10 5

Proposed 
method

MFCC 

+ MFCC 

I - 143

➡ ➡



maximum reduction in WER was 77.9 % (airport noise at 20 dB 

SNR, not shown in Figure 5 or Table 1), and the average value 

was 18.21 % at SNRs of 0 to 20 dB. At an SNR of 15 dB, the 

proposed method shows the best WER reduction performance. 

Without any noise reduction techniques, the proposed 

method not only maintained (or improved) the accuracy in clean 

environments, but also improved its accuracy especially at SNRs 

of 20 to 10 dB. In this SNRs region, the averaged WER 

reduction was 36.49 %. It is also expected that the performance 

of this method will improve further in conjunction with certain 

noise reduction methods. Also in this experiment, although the 

feature parameters provided by the proposed method were only 

static parameters and its deltas, the experimental results show 

that the proposed method is more robust in terms of digit 

recognition in noisy environments than the MFCC-based 

features, which use its acceleration and log power parameters 

added to static and its delta. The experimental results confirm 

that the feature representation provided by our proposed method 

is also useful for robust ASR in real noise environments. 

4. CONCLUSION 

This paper proposed a speech feature extraction method 

representing periodic and aperiodic features for robust ASR. The 

method uses Gammatone filter banks and comb filters to divide 

speech signals into two features. An evaluation experiment with 

the Aurora-2J database showed that the proposed feature 

extraction method provides better performance in the presence 

of noise than the conventional MFCC-based feature extraction 

method. The results indicate that such an enhancement in sound 

representation can improve the robustness of an ASR system. 
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Figure 5: Experimental results with Aurora-2J. The word 

accuracies for set A (top left), B (top right), C (bottom left) 

and their averages (bottom right). The abscissa indicates 

SNRs, and the ordinate indicates the word accuracy. Note 

that SNR “C” on the abscissa means “clean” conditions. 

Table 1: Experimental results with the Aurora-2J. The word 

accuracies with the baseline features and the proposed features 

(top) and the WER reduction rate (bottom) at an SNR of 15 dB 

and the average value at SNRs of 0-20 dB. At an SNR of 15 dB, 

our method showed the best performance in WER reduction. 

Method SNR Set A Set B Set C Overall

Average 46.51 43.98 49.90 46.17

15 dB 66.67 59.83 73.10 65.22

Average 56.33 57.38 52.46 55.98

15 dB 82.15 83.84 79.08 82.21

Average 18.37 23.92 5.10 18.21

15 dB 45.65 59.62 20.77 46.26

Word Accuracy (%)

WER reduction rate (%): Relative performance

Proposed

Proposed

Baseline
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