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ABSTRACT 

In this paper, Minimum Classification Error (MCE) method is 
extended to optimize both Linear Discriminant Analysis (LDA) 
transformation and the classification parameters for 
dimensionality reduction. Firstly, under the HMM-based 
Continuous Speech Recognition (CSR) framework, we use 
MCE criterion to optimize the conventional dimensionality 
reduction method, which uses LDA to transform standard 
MFCCs. Then, a new dimensionality reduction method is 
proposed. In the new method, the combination of Discrete 
Cosine Transform (DCT) and LDA, as used in the conventional 
method, is replaced by a single LDA transformation, which is 
optimized according to MCE criterion along with the 
classification parameters. Experimental results on TiDigits 
show that even when the feature dimension is reduced to 14, the 
performance of this new method is as good as that of the MCE-
trained system using 39 dimension MFCCs. It also outperforms 
our MCE-optimized conventional dimensionality reduction 
method. 

1. INTRODUCTION 

In order to implement speech recognition on a resource-limited 
platform, we always try to reduce the model size as much as 
possible. One choice is to use a small number of model units, 
states or Gaussian mixtures. Another choice is to reduce the 
feature dimension, which is the focus in our work. LDA 
transformation [1] is usually chosen to perform dimensionality 
reduction. 

Figure 1 shows the Conventional dimensionality reduction 
feature extractor (Conventional-DRFE), in which LDA 
transformation is used to transform the standard MFCCs to a 
new, lower dimension feature vector. LDA attempts to separate 
classes through maximizing the ratio of between-class scatter 
matrix and within-class scatter matrix, however, this has little 
direct relation with the final classifier’s target of minimum 
recognition error rate. In contrast, MCE [2] can adjust the 
classification parameters to achieve minimum recognition error. 
And its extension, Discriminative Feature Extraction (DFE), 
has been employed in various speech recognition tasks, such as 
filterbank design [3], feature transformation [4], and dynamic 
feature design [5]. In our work, DFE is extended to carry out 
dimensionality reduction. We adjust the LDA transformation 
parameters and the classification parameters simultaneously 
with the MCE criterion in the DFE framework. A similar idea 
was reported in [6] to solve the Mahalanobis distance based 
vowel recognition, while not under HMM framework. Since 

HMM is the mainstream algorithm in speech recognition. So we 
develop the MCE-optimized conventional dimensionality 
reduction method into the HMM-based CSR framework. 

Figure 1. Block diagram of Conventional-DRFE 

As we know, both DCT and LDA can be used for feature 
decorrelation. In Conventional-DRFE, DCT is used for this 
purpose. However, it has been reported that LDA is a better 
choice than DCT for feature decorrelation [7]. Moreover, LDA 
can also be used for dimensionality reduction besides feature 
decorrelation. So we use a single LDA transformation to replace 
the combination of DCT and LDA to perform feature 
decorrelation and dimensionality reduction simultaneously. This 
dimensionality reduction method (New-DRFE) is shown in 
figure 2. It is similar to the method reported in [7] that using 
LDA to replace DCT. But their system was trained by MLE. In 
contrast, we propose to use MCE criterion to optimize the LDA 
transformation and the classification parameters in the DFE 
framework. Three versions of our method are derived. 

Figure 2. Block diagram of New-DRFE 

The rest of the paper is organized as follows. Section 2 
describes the DFE in the HMM-based CSR framework, and 
provides the derivation of the updating formulas for the LDA 
transformations both in Conventional-DRFE and New-DRFE 
under the MCE criterion. In section 3, we show our 
experimental results on TiDigits. The choice of initial 
transformation in New-DRFE is discussed in section 4. Finally, 
we summarize our work in section 5. 

2. DFE-BASED LDA TRANSFORMATION 
OPTIMIZATION 

2.1. DFE in HMM-Based continuous speech 
recognition framework
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DFE is the extension of MCE for joint optimization of models 
and features. Let ),( ΓΛ=Φ  denote the parameter set, where 

Λ  denotes the model parameters, and Γ  denotes the parameter 
set of the feature extraction module. 

In CSR, string-model-based discriminant function [2] is 
used. For an input speech utterance, the final feature is 

{ }TooO
�

�

�

,,1= . Let NiSi ,,1, �=  denote the top N  best 

competing strings, the corresponding discriminant function is 
given by: 
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And for the correct string 
lexS , the discriminant function is: 
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where 
iSQ (

lexSQ ) is the optimal state sequence of the word 

string 
iS (

lexS ). Then the misclassification measure is defined 

as: 
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It is embedded into the sigmoid function: 
1),( )1(),( −Φ−+=Φ OdeOl γ .

The goal of DFE is to minimize the expected loss 
[ ]),()( Φ=Φ OlEL X

. This can be solved by the Generalized 

Probabilistic Descent (GPD) algorithm as: 
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where 
1U  and 

2U  are positive definite matrices, 
nε  and 

nτ  are 

the learning step size for Λ  and Γ .
The chain rule of differential calculus is used to adjust Λ

and Γ . When 0=nτ , this training is the classical MCE, and 

when 0=nε , it is only to optimize the feature extractor’s 

parameters. The complete updating formula for Λ  can be found 
in [2]. The updating formula for Γ  is described in detail as 
follows. 

2.2. Gradient calculation of LDA transformation 

LDA transformation W  transforms the original n  dimension 
feature vector x

�  into a new )( ndd ≤  dimension vector y
� . It 

is formulated as: 
tt xWy
�� =  . 

To use DFE to adjust LDA transformation, we have W=Γ .

The gradient calculation is given as follows: 
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For LDA transformation in Conventional-DRFE, let 
tx
�

denote the input feature vector as MFCCs, the output feature 
vector is 

tt xWo
�� = . We have: 
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where, S  is 
iS  or 

lexS , )(⋅δ  denotes the Kronecker delta 

function,  
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is the state output probability with diagonal covariance matrix, 
and )()()( 1

tjtjmjmtjm obobco
��� −=γ .

For LDA transformation in New-DRFE, we give three 
versions. Version 1 is similar to the condition in Conventional-
DRFE. 

tx
�  denotes the input static and dynamic log filterbank 

energies. Then 
tt xWo
�� = . The updating formula is the same as 

formula (9). 
In version 2 and version 3, we consider the static features 

and the dynamic features separately. Let 
tx
�  denote the static log 

filterbank energies, 
tx
�∆  and 

tx
�∆∆  denote the first and second 

order derivatives of 
tx
� . In version 2, we use the same 

transformation to transform them. Then the new, transformed 
static feature vector is given by: 

tt xWy
�� = , and the dynamic 

features of 
ty

�  are: 
tt xWy
�� ∆=∆  and 

tt xWy
�� ∆∆=∆∆ . The final 

feature 
to
�  is composed of 

ty
� ,

ty
�∆ ,

ty
�∆∆ , log energy and its 

derivatives. Then we get: 
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In version 3, we use different transformations to transform 

tx
� ,

tx
�∆  and 

tx
�∆∆ , So: 

tt xWy
�� = ,

tt xWy
�� ∆∆=∆  and 

tt xWy
�� ∆∆∆∆=∆∆ . We get: 
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Similar derivations for W∆∆  can be easily accomplished. 

3. EXPERIMENTAL RESULTS 

We test our methods on TiDigits, a speaker independent, 
connected digit utterances database. The speech signal was 
recorded from various regions of the United States. The 
database contains 12549 strings for training and 12547 strings 
for testing. The digits string has a random length from 1 to 7. 
The model we used is a 10-state, whole-word based HMM 
model. A 3-state silence and a 1-state short pause models were 
added. Each HMM-state was chosen as a class used to get the 
LDA transformation. 

Since DFE has two kinds of trainable parameters: the 
parameters of HMM models and the parameters of feature 
extractor, the following training schemes were investigated: 

♦ DFE-M: MCE training of the HMM model parameters 
only; 

♦ DFE-F: MCE training of the transformation parameters 
only; 

♦ DFE-FM: MCE training of the transformation 
parameters and the HMM model parameters 
simultaneously; 

For the three versions of New-DRFE, we currently only 
test version 2 in our experiments. The experiments on version 1 
and version 3 of New-DRFE will be tested in the future. 

All the experimental results given in the following are 
represented by Word Error Rate (WER). 

3.1. Dimensionality reduction of Conventional-DRFE 

We use LDA transformation to transform the original 39 
dimension features (12 for static MFCCs, 1 for log energy and 
their first and second order derivatives) to the new 13 and 26 
dimension features. The results of 2 mixtures (where 39-MLE 
and 39-DFE-M indicate the ML and MCE estimation results of 
the original 39 dimension features) is shown in table 1. We can 
see that the MLE-trained system performance is degraded 
severely after dimensionality reduction. But by using DFE, as 
we see, there is a significant WER reduction compared with the 
MLE-trained system, even though only the LDA transformation 
is adjusted. Furthermore updating models and transformation 
simultaneously gives a much better result than updating models 
only. When using DFE-FM, we get slightly better performance 
in the 26 dimension system than that of the original MCE-
trained 39 dimension MFCCs system. 

Table 1. % WER of dimensionality reduction of Conventional-
DRFE 

Dimension 13 26 39 
MLE 2.96 2.40 1.81 
DFE-F 2.11 1.30 --- 
DFE-M 1.16 0.86 0.72 
DFE-FM 1.00 0.70 --- 

3.2. Comparison between DCT and LDA in New-
DRFE 

Here DCT in New-DRFE denotes using DCT to replace LDA in 
figure 2. We compared the results of by using DCT and by 
using LDA to transform the log filterbank coefficients in New-
DRFE. 

Table 2 shows the comparison in different mixtures per 
state using standard ML estimation. 26 dimension features (12 
for transformed static features, 1 for log energy and their first 
order derivatives) were used. We can see clearly that LDA is 
better than DCT in MLE-based system.  

Table 2. % WER of DCT and LDA in MLE-trained 
New-DRFE 

Transformation DCT LDA 
1mix 3.00 2.28 
2mix 1.80 1.75 
4mix 1.37 1.22 

In table 3 we can see the comparison results with different 
training algorithms in 2 mixtures. It is obvious that LDA 
outperforms DCT, especially in DFE-based system. A WER 
reduction of 16% is obtained from updating LDA only as DFE-F, 
in comparison with the DCT-based MLE-training system. WER 
reduction gets close to 70% when DFE-M or DFE-FM is used. 
DFE-FM is a little better than DFE-M, with WER reduction at 
about 5%. 

Table 3. % WER of DCT and LDA initialized New-DRFE with 
different training algorithm 

Training algorithm DCT LDA 
MLE 1.80 1.75 
DFE-F 1.74 1.50 
DFE-M 0.81 0.57 
DFE-FM 0.79 0.54 

3.3. Dimensionality reduction of New-DRFE 

The results of dimensionality reduction using LDA initialized 
New-DRFE are shown in table 4. As we see, the performance is 
significantly improved. Even when we reduce the dimension to 
14, the WER is 0.71%, which is comparable to the performance 
of 0.72% in WER of the MCE-trained 39 dimension MFCCs 
system. The WER of the 26 dimension system is 0.54%, which 
has a 25% WER reduction to the MCE-trained 39 dimension 
MFCCs system. 

Compared with the results of DFE-FM in Conventional-
DRFE as shown in table 1, we can see that the 26 dimension 
system of New-DRFE is much better than that of MCE-

I - 139

➡ ➡



optimized Conventional-DRFE. And the 14 dimension system 
of New-DRFE is as good as the 26 dimension system of MCE-
optimized Conventional-DRFE. 

Table 4. % WER of dimensionality reduction of  
New-DRFE 

Dimension 10 14 18 22 26 
MLE 2.60 1.80 1.77 1.74 1.75 
DFE-FM 0.92 0.71 0.65 0.64 0.54 

4. DISCUSSION 

Instead of using LDA, DCT can also be used in New-DRFE. A 
method using state-dependent DCT initialized transformations 
was reported in [4]. Though focusing on feature decorrelation, it 
can also be used for dimensionality reduction. However, its 
dimensionality reduction performance is not satisfying. 
According to [4], the static feature dimension can only be 
reduced to 12, in order to get an acceptable performance. 12 
static features with log energy and their derivatives added, the 
feature dimension is not reduced (the same as the conventional 
39 dimension features: 12 for static MFCCs, 1 for log energy 
and their first and second order derivatives). In contrast, our 
method using LDA can reduce the feature dimension much 
more. The results in section 3.2 also show that the 
dimensionality reduction performance using DCT is worse than 
using LDA. That is to say, the effect of MCE-training is 
sensitive to the initial parameters. The choice of DCT limits its 
dimensionality reduction performance. Our choice of LDA is 
more effective. 

5. CONCLUSION 

In this paper, we use MCE criterion to reduce feature dimension 
in both Conventional-DRFE and New-DRFE.  

In Conventional-DRFE, we apply MCE-optimized 
dimensionality reduction method to the HMM-based CSR 
framework. Using this method, we get slightly better 
performance in the 26 dimension system than that of the MCE-
trained 39 dimension MFCCs system.  

In our proposed New-DRFE method, a single LDA 
transformation is used to perform feature decorrelation and 
dimensionality reduction simultaneously. This LDA 
transformation together with the classification parameters can 
be optimized by MCE criterion. This New-DRFE method can 
get significant performance improvement on TiDigits. 
Compared with the original MCE-trained 39 dimension MFCCs 
system, 25% WER reduction is achieved in the new 26 
dimension system and comparable performance can even be got 
in the new 14 dimension system. This method also outperforms 
our MCE-optimized conventional dimensionality reduction 
method. In addition, our experimental results show LDA as the 
initial transformation is a reasonable choice.  

We don’t use big number of model mixtures in our 
experiment because of the heavy computation load; future work 
will be done to get the improvement results of the best possible 
models. Another future work is to compare our result with other 
improved projection methods. 
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