<

ROBUST SPEECH FEATURE EXTRACTION BY GROWTH TRANSFORMATION IN
REPRODUCING KERNEL HILBERT SPACE

Shantanu Chakrabartty, Yunbin Deng and Gert Cauwenberghs

Center for Language and Speech Processing
Johns Hopkins University, Baltimore, MD 21218, USA
{shantanu,yunbin,gert} @jhu.edu

ABSTRACT

A robust speech feature extraction procedure, by kernel re-
gression nonlinear predictive coding, is presented. Fea-
tures maximally insensitive to additive noise are obtained
by growth transformation of regression functions spanning
a Reproducing Kernel Hilbert Space (RKHS). Experiments
on TI-DIGIT demonstrate consistent robustness of the new
features to noise of varying statistics, yielding significant
improvements in digit recognition accuracy over identical
models trained using Mel-scale cepstral features and evalu-
ated at noise levels between 0 and 30 dB SNR.

1. INTRODUCTION

While most current speech recognizers give acceptable
recognition accuracy for clean speech, their performance
degrades when they are subjected to noise present in prac-
tical environments [1]. For example it has been observed
that additive white noise severely degrades the performance
of Mel-cepstra based recognition systems [1, 2]. This per-
formance degradation is attributed primarily to unavoidable
mismatch between training and recognition conditions. To
reduce the effect of mismatch several techniques have been
proposed in the literature, which can be broadly categorized
as:

e Noise estimation and filtering that reconditions the
speech signal based on noise characteristics [2];

e On-line model adaptation to reduce the effect of mis-
match in training and test environments [3];

e Extraction of speech features robust to noise [4], in-
cluding features based on human auditory model-
ing [5, 6].

This paper proposes a novel feature extraction mecha-
nism for speech signal representation, kernel predictive cod-
ing cepstra (KPCC), by growth transformation on function-
als in a reproducing kernel Hilbert space (RKHS). RKHS
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techniques have been used in signal processing for the pur-
pose of signal estimation and detection in the form of co-
variance functionals [7]. Our work is based on regression
techniques using RKHS which are popular in the machine
learning community especially in the field of regularization
theory [8] and support vector machines [9]. By imposing
smoothness constraints on the functions in RKHS, a nonlin-
ear regression can then be performed to filter out the noise in
the signal. It has been shown [8] that for a specific (Toeplitz)
form of the kernel the smoothness constraints correspond to
low pass spatial filtering.

Growth transformation is an iterative optimization pro-
cedure of homogeneous polynomial cost functions con-
strained over fixed manifolds [10]. This technique is
popular for its use in discriminative hidden Markov
model (HMM) training using maximum mutual informa-
tion (MMI) [11], where it is extended to optimizing non-
homogeneous rational functions. For this feature extraction
task the growth transformation is defined over a parameter-
ized polynomial kernel which over a fixed manifold results
in nonlinear features that are very robust to noise and inter-
ference.

The paper is organized as follows. Section 2 introduces
notions of kernel based predictive coding and growth trans-
formation. Section 3 details the feature extraction algorithm
and its parameterization. Section 4 presents results from
recognition experiments performed with the resulting fea-
tures, and Section 5 provides concluding remarks, discus-
sions and future directions.

2. RKHS PREDICTIVE CODING

This section reviews fundamentals and fixes notational con-
vention in light of the KPCC feature extraction algorithm.
The key components illustrated in Figure 1 are the kernel
regression block and growth transformation block.
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Fig. 1. Signal flow in KPCC feature extraction

2.1. Kernel Regression

Given a stationary discrete time signal z[n],n € 1, .., N and
a RKHS H defined over some domain 2 C R, the aim of
kernel regression is to estimate a functional f € H such
as to reconstruct (predict) the signal z[n] from previous P
samples x[n — 1] = [z[n — 1], ..,z[n — P — 1]]T as &#[n] =
(f, K(.,x[n — 1]))u. Here (., .) g defines an inner-product
between two elements of H and K : R x RF — Risa
reproducing positive-definite kernel over H. The optimum
function f is obtained by minimizing the cost function

min C(f) = —||f||H+ Z z[P +n]—&[P+n]) (1)

feH

where L(.) > 0 is a loss function penalizing the recon-
struction error, and the smoothness term || f||%; represents
the regularizer penalizing large signal excursions, weighted
by regularization parameter A\. The solution of the op-
timization problem (1) is well known [12] of the gen-
eral form f(y) = Zg:_lp anK (x[P + n],y). Denoting
Ky = K(x[P + n],x[P 4 m]) as the kernel matrix and
re-substituting in the cost function (1) for square loss leads
to ridge regression with dual formulation

W(;K) =1/2xa” (K + AX)a —aTx[N] ()
and with optimum solution

a* =AM +K) 'x[N]. 3)

2.2. Kernel Growth Transformation

The principle of growth transformation can be directly ap-
plied to parameterization of an inner-product based kernel.
Consider a kernel of the form K (x,y) = g({x,y)), where
(x,y) is an inner-product defined on two vectors in ¥,
and g(.) is an arbitrary function decomposable as polyno-
mial expansions, like g(z) = 2% or g(z) = exp(z). The
idea behind growth transformation of the kernel K (., .) is to
parameterize the inner-product (.,.) with predictive coeffi-
cients 3 = [3;]7, B; > 0 such that

P
(x[n], x[m]) = Z Bixln — iaxm —

In addition we enforce that (3; lie on the manifold M :
>, Bi = 1 to ensure proper normalization.

il+y &

The parameterization in 3; endows the kernel with the
following properties:

o The kernel function K (.,.) and hence the dual cost
W (a; K) is polynomial in f3.

¢ The kernel contains higher-order correlation terms of
the discrete signal z[n] and its delayed versions. In
this sense the kernel expansion is similar to linear pre-
dictive coding (LPC), where the coefficients 3; weigh
the correlation across samples at time lags ¢, although
the relationship is nonlinear through the map g(-) in
the kernel.

The polynomial nature of dual (2) supports direct ap-
plication of growth transformations with respect to the pa-
rameters (3; to maximize the cost function over the mani-
fold M [10]. The idea behind the growth transformation
is to find coefficients 3; to maximally un-learn the regres-
sion function f(x) by maximizing the dual (2) obtained by
minimization over .. Maximization over the coefficients 3;
identify the dimensions in the input vector x that are least
predictable thereby differentiating between noisy and sys-
tematic components in the input. Using the growth trans-
formations procedure described in [11] over the manifold
M : 3,8 = 0,6; > 0 the coefficients 3 are re-mapped
according to

B:0W (a*;K)/0p; + D
>k (BrOW (a*;K) /0B + D)

The parameter D is a smoothing constant that determines
the degree of deviation of the new parameters with respect
to the old parameters and plays an important role in noise
robustness.

Insight into the role of the transformation (5) can be
gained by noting that

oW (a”; K) - ,
95, = nz;nanamK{jx[n—z]x[m

Bi

&)

—i] (6)

2

K'(.,x[m])||

H

where K' is the derivative of kernel K. For the kernels un-
der consideration, K’ also has a reproducing property over
a corresponding Hilbert space H'. For the specific choice
K(x,y) = exp({x,y)), both RKHS representations co-
incide H' = H and thus the coefficients 3; in (7) reduce
to relative norms of the functions in H re-weighted by the
training samples at time lags ¢. This in turn reduces to
cross-correlation between the regression function and sam-
ples z[m — i],Vm. As an interesting limiting case, for
A — oo and for a linear kernel of type K (x[n],x[m]) =
(Zf:l Bixz[n — ilz[m — i] + ), according to (5) the coef-
ficients 8; o< (3, z[m]xz[m — i])? relate directly to the L
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norm of the auto-correlation function. This affirms that the
transformation (5) subsumes linear predictive coding and
produces more general, nonlinear features.

3. KPCC FEATURE EXTRACTION ALGORITHM

The KPCC feature extraction procedure illustrated in Fig-
ure 1 comprises the following steps:

e Extract speech samples by shifting a rectangular win-
dow of size N by W intervals;

e For a given order P choose an initial value of pa-
rameters 3;,% = 1,.., P. In the experiments below
the initial values were chosen according to the profile
Bi = ¢ + hsin(iw/P), akin to the liftering profile in
Mel-scale filterbank cepstral coefficient (MFCC) fea-
ture extraction;

e Obtain the kernel matrix K by applying the map g(.)
to (4) over the data window. Train the dual objec-
tive (2) by assigning optimal coefficients «), accord-
ing to (3);

e Perform growth transformation (5) to obtain new es-
timates of /3;, at the optimum value of a);;

e Average and decimate the coefficients §; along i =
1, ... P to reduce the number of features; and

e Perform discrete-cosine transformation (DCT) on the
reduced coefficients to obtain the final KPCC fea-
tures. As in MFCC feature extraction, the first DCT
coefficient and higher-order coefficients are discarded
since they carry little information relevant to speech.

4. EXPERIMENTS AND RESULTS

For all experiments KPCC features were extracted using a
20 ms window shifted by 10 ms, with kernel regression or-
der P = 60, and withc = 0.3,h = 0.5, A = 0.5, D = 1 and
v = 0.3. The 60 growth features ; were averaged and dec-
imated to 30 coefficients. Without loss of generalization it
has been assumed that the input signal is rescaled such that
z[n] < 1,Vn. After DCT, 12 coefficients (indices 2 through
13) were selected as features for the recognition system.
Figure 2 shows a sample comparison between KPCC fea-
tures and corresponding MFCC features for digit five ob-
tained before DCT operation for different SNR levels. As
standard in MFCC, a window size of 25 ms with an overlap
of 10 ms was chosen, and cepstral features were obtained
from DCT of log-energy over 24 Mel-scale filter banks. The
degradation of spectral features for MFCC in the presence
of white noise is evident, whereas KPCC features prevail at
elevated noise levels.
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Fig. 2. MFCC features (a)-(c) and KPCC features (d)-(f) for
digit five obtained before DCT, under different SNR condi-
tions (clean, 30 dB and 10 dB).

For recognition experiments, we chose a simple isolated
TI-DIGIT digit recognition task with a vocabulary size of
11 (zero to ten plus ‘O’). The training set contained two
utterances of isolated digits each from 35 male speakers
comprising a total of 770 utterances, and the test set con-
tained isolated digits from 25 other male speakers for a to-
tal of 440 utterances. A recognition system was developed
using the Hidden Markov Toolkit (HTK), implementing a
14-state left-to-right transition model for each digit where
the probability distribution on each state was modeled as
a four-mixture Gaussian. As a baseline, the same recog-
nition system was developed using MFCC features com-
prising of 12 coefficients, without energy and delta features.
Noise samples for the experiments were obtained from the
NOISEX database and were added to clean speech to ob-
tain test data. We considered four types of noise common
in application environments: white noise (W), speech bab-
ble noise (B), factory noise (F', plate-cutting and electrical
welding equipment) and car interior noise (C, Volvo 340 at
75 mph under rainy conditions). Table 1 summarizes the
recognition rates obtained based on the two features under
different noise statistics and under different SNR levels.

The following can be inferred from the tabulated results:

1. For clean speech the performance of both systems are
comparable, with high recognition rates.

2. For white noise the recognition system with KPCC
features demonstrates much better noise robustness
than corresponding MFCC features. In fact, KPCC
maintains acceptable (> 90%) recognition perfor-
mance for noise reaching signal levels (SNR ap-



Table 1. Comparison of recognition rates for an HMM
system using KPCC features with identical system using
MFCC features, for additive white gaussian (W), babble
(B), car (C) and factory (F') noise, at various SNR levels.

| | | Clean | 30dB | 20dB | 10dB | 0dB ]
W [ MFCC | 98.8% | 81.1% | 27.5% | 122% | 12.3%
KPCC | 97.8% | 97.5% | 96.3% | 90.6% | 48.6%
B | MFCC | 98.8% | 97.2% | 93.8% | 60.7% | 54.2%
KPCC | 97.8% | 96.6% | 952% | 784% | 543%
C | MFCC | 98.8% | 98.6% | 98.1% | 96.8% -
KPCC | 97.8% | 97.7% | 968% | 95.2% -
F | MFCC | 98.8% | 95.9% | 67.7% | 28.6% -
KPCC | 97.8% | 96.3% | 96.1% | 73.836% -
proaching O dB).

3. KPCC features demonstrate significantly better per-
formance in the presence of factory noise and slightly
better performance in the presence of babble noise.
An interesting observation can be made at this point
by noting the trend in recognition rates for babble
noise in comparison with other noise types. Bab-
ble noise primarily consists of speech signals pro-
duced by other humans and hence not only corrupts
the entire information bearing frequency bands but
also shares statistical properties of the reference sig-
nal. This attribute is reflected by reduction in error
rates even though KPCC features are more robust to
MEFCC features. For other sources of noise the statis-
tics are substantially different from reference statis-
tics, which KPCC features utilize to extract noise ro-
bust features. This can be observed especially for
white noise at very low SNR, for which KPCC fea-
tures provide reasonable recognition performance.

4. The performance of both MFCC features and KPCC
features do not degrade rapidly in the presence of car
noise and yield similar relative decrease in recogni-
tion rates. This can be attributed to the very low fre-
quency nature of car noise, which keeps the higher
frequency features intact for recognition purposes.

5. CONCLUSIONS

In this paper we presented a novel speech feature extraction
procedure robust to noise with different statistics, for de-
ployment with recognition systems operating under a wide
variety of conditions. The approach is primarily data driven
and effectively extracts nonlinear features of speech that

are largely invariant to noise and interference with varying
statistics.
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