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ABSTRACT

In this paper we present work that has been carried out in
developing the ETSI Extended DSR standards ES 202 211 and
ES 202 212 [1][2]. These standards extend the previous ETSI
DSR standards: basic front-end ES 201 108 and advanced (noise
robust) front-end ES 202 050 respectively. The extensions
enable enhanced tonal language recognition as well as server-
side speech reconstruction capability. This paper discusses the
client-side estimation of pitch and voicing class parameters
whereas a companion paper discusses the server-side speech
reconstruction. Experimental results show enhancement of tonal
language recognition rates of proprietary recognition engines,
when the standard extensions are used.

1. INTRODUCTION

The European Telecommunication Standards Institute (ETSI)
STQ Aurora group has published two distributed speech
recognition (DSR) standards in the years 2000-2002 [3]. The
basic front-end, as well as the noise robust advanced front-end
define feature extraction and compression on a mobile terminal.
The compressed features are transmitted to a server for
recognition back-end processing.

The front-end standardization process included recognition
tests performed in several European languages, as well as
American English. It is well known, however, that for some
Asian languages such as Mandarin, Cantonese and Thai,
recognition accuracy can be enhanced by introducing tonal
information in addition to the spectral information [4], [8]. To
promote the use of the ETSI DSR standards in Asia, the Aurora
group has decided to extend the existing DSR standards to
include extraction and compression of tonal information. The
two extended standards (extended basic and advanced front-
ends) also enable server-side speech reconstruction using the
Mel-Cepstral features (MFCC) extended by the tonal
information. The reconstruction algorithm is an integral part of
the standards, and is discussed by a companion paper. The
development of the extended standards has been carried out
during the years 2002-2003, jointly by IBM and Motorola.

This paper deals with the client side processing, server-side
post-processing of the tonal information and using the standard
tonal parameter in tonal language recognition evaluation.

2. FRONT-END PROCESSING AT THE CLIENT

The overall complexity and memory requirements of the
extended front-ends do not exceed those of the GSM-AMR
speech encoder; the bit rate addition is 800 bps, resulting in a
total bit-rate 5600 bps and the delay is identical to the delay of
the basic and advanced front-ends.
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Figure 1: Front-end processing block diagram

In figure 1, the basic/advanced FE block represents the
feature extraction component of the non-extended front-ends,
producing MFCC and log energy information. In addition, two
intermediate data structures are obtained from the
basic/advanced feature extraction – the short time Fourier
transform (STFT) and the outputs of the Mel filters. These are
reused for the computation of the extension data.

For every 10 msec speech frame, the extension data,
comprising the pitch and the voicing class, is computed and
encoded together with the MFCC and logE data. We shall now
describe the extension blocks presented in figure 1.

2.1. Voice Activity Detection (VAD)

Voice Activity information is used to enhance the pitch
estimation robustness under noisy conditions. It is also
incorporated as part of the voicing class information and can be
used for segmentation (or end-point detection) of the speech data
for improved recognition performance. The voice activity
detector is based on the outputs from the mel-filter bank, which
are computed in the MFCC feature extraction process.

2.2. Efficient Robust Pitch Detection
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Pitch is estimated for frames classified by the VAD as speech.
The algorithm consists of three major stages: 1) selection of
pitch candidates with corresponding scores by frequency-domain
analysis; 2) computation of time-domain correlation scores; 3)
selection of the final pitch estimate among the candidates.

Usually, pitch estimation is sensitive to low frequency band
noise (LBN) with significant spectral components inside the
frequency diapason where the pitch frequency (F0) search is
performed. LBN is often present in the passenger compartment
of a moving or idling automobile, thus severely limiting the
applicability of pitch estimation methods in mobile
environments. In order to overcome this problem LBN detection
is performed at each frame preceding the pitch estimation. The
(binary) decision of the LBN detector is passed to the pitch
estimator in order to appropriately modify some of its parameters
on the fly as described below.

2.2.1. Low-frequency Band Noise Detection
The LBN detection is performed by power spectrum analysis for
non-speech frames. A ratio Rcurr is computed of the maximal
spectrum value in the diapason [0, 380Hz] to the maximal
spectrum value in the complementary high frequency diapason.
An integrative LBN contribution measure R is updated as R =
0.99*R + 0.01*Rcurr. LBN is detected if R>1.9. The integrative
measure R is initialized to 1.9.

2.2.2. Generation of Pitch Candidates
The algorithm is based on spectral peaks analysis and inherits
the main ideas described in [5] with some modifications aiming
to limit the amount of computations being performed in the
worst case. The STFT computed by the DSR front-end is reused
as an input for this stage.

The STFT frequency resolution is doubled by Dirichlet
interpolation, and the absolute values are computed. The N
highest spectral peaks are determined by finding the highest
local maxima on the discrete spectrum, where N�20. Only peaks
associated with frequency greater than 300Hz are considered if
LBN has been detected. Then the peak amplitudes are
normalized so that their sum is equal to 1. The set of N peaks
inspires a utility function U(F0) of all possible pitch values
within a search range F0min �F0�F0max:
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where Ai and fi are respectively the amplitudes and
frequencies of the spectral peaks, and I(r) is a periodic piecewise
constant influence function with period R=1 defined as follows:
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Each additive component of the sum (1) has local maxima in
the vicinity of the integer dividers of the corresponding peak
frequency fi. The pitch candidates are selected among the local
maxima of the utility function.

An approximate algorithm with guaranteed worst case
complexity is employed for finding all local maxima of U(F0).
The M highest peaks (M=7) are selected among the N peaks and
sorted in a descending order of their amplitudes. For every peak
fi all the break-points of the piecewise constant individual utility

function )( 0FfIA ii � are determined. The process continues
until either all M peaks are processed or the number of break
points (and therefore the amount of computations) exceeds a
predefined limit. Then the individual utility functions built for
K�M peaks are merged together representing a preliminary
utility function. The four highest local maxima of the
preliminary utility function are selected. Their utility values are
recomputed directly in accordance with (1), using all N peaks.
Then, two pitch candidates are selected among the four maxima.
The selection process gives preference to candidates with high
utility value, high F0 and F0 close to the one found at the
previous frame. Each candidate comprises an F0 value along
with a corresponding spectral score (the utility value).

In order to have a more uniform distribution of the pitch
candidates over the pitch search range, the above procedure is
independently applied to 3 overlapping pitch search intervals:
S1=[52Hz,120Hz], S2=[100Hz,210Hz], S3=[200Hz,420Hz]. If
the pitch estimates obtained at the previous 6 frames are close
enough to each other, then S1, S2 and S3 are intersected with a
narrowed search range [0.666*F0prev, 2.2*F0prev], where F0prev is
the pitch estimate at the previous frame. For each of the
intersections W1, W2 and W3, two pitch candidates are
generated, provided it is non-empty.

For the low frequency sub-range W1, representing long pitch
periods, the window used for computing the STFT is too short
for a reliable estimation. A new, approximated STFT is
generated from the current and previous STFTs according to:
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where � is the frame shift.

The pitch search intervals are processed in the order W3, W2,
W1. For each pitch candidate a correlation score is computed as
described below (2.2.3). If the candidate's spectral score and
correlation score are close to 1 the candidate is declared as the
pitch estimate and the process terminates. Otherwise all pitch
candidates are passed to an estimate selection block where less
restricted constraints are imposed on the candidate scores, as
described in 2.2.4.

2.2.3. Correlation Scores Calculation
Correlation is computed for each pitch candidate using a low
pass filtered and downsampled version of the speech signal. The
filtering is done by a 6-th order IIR Butterworth filter with a cut-
off frequency of 800Hz. If no LBN has been detected then the
low pass filter is combined with a first order IIR low frequency
emphasis filter. Downsampling factors of 4, 5 and 8 are used for
sampling rates of 8kHz, 11kHz and 16kHz respectively. An F0

value associated with a pitch candidate is transformed to a time
lag divided by the downsampling factor. Long enough fragment
of the downsampled signal is stored in order to enable
processing of large lags. In general, the lag is fractional, and the
method described in [6] is used for computing the correlation.

2.2.4. Final Decision Making
A heuristic logical scheme is used for selecting the final pitch
estimate. The scheme has a decision tree form, and tests various
conditions involving absolute values of the spectral and
correlation scores, relative score values of the candidates, and
pitch information from previous frames. If none of the
conditions is satisfied the frame is declared as unvoiced.
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2.3. Voicing Classification

There are four possible voicing classes: non-speech, unvoiced,
mixed-voiced and fully-voiced. The mixed-voiced class was
defined in order to improve the quality of the server-side speech
reconstruction.

Classifying a frame as non-speech or unvoiced is carried out
by the VAD and the pitch detector respectively. An additional
classification process is required, in order to distinguish
between the two voiced classes. This is done by checking the
energy of the high frequency band as well as a zero-crossing
measure.

2.3. Data Compression

For the pitch information compression, the frames are coupled
into pairs. Pitch values are quantized with 12 bits per pair, using
both absolute and differential quantization. Reference values for
the differential quantization are chosen dynamically in a way
that limits the spreading of channel errors effect. One additional
bit per frame is required for the voicing class. The class index
and pitch index jointly represent the actual voicing class, thus
enabling 4 classes, according to table 1:

Table 1: Class quantization

Two CRC bits are added per frame pair. Thus, for a frame pair
(20 msec), a total of 16 bits is required and the bit-rate increase
required for the extension is 800 bps.

3. PITCH TRACKING AT THE SERVER

While client side pitch detection is subject to strict requirements
in terms of computation load and delay, this is not the case for
the server side processing. Thus, it is possible to further refine
the raw pitch contour, decoded at the server, by a pitch tracking
mechanism that utilizes a look-ahead of several speech frames.
The objective of the pitch tracking process is to produce a
continuous pitch track and remove pitch and voicing errors.
Pitch tracking is beneficial for both tonal language recognition
and for speech reconstruction and is therefore an integral part of
the standard.

The input to pitch tracking module is a set of successive
pitch period values and corresponding voicing classifications
and log energy values, available in both basic and advanced
Front-End standards. The outputs are the corrected pitch values
and corrected voicing classifications.

The pitch tracking process is carried out in two stages. In the
first stage, gross pitch and voicing error are corrected and in the
second the pitch contour is smoothed.

Gross pitch or voicing classification errors are corrected by
examining the neighbors of a frame. For example if a frame was
classified as voiced and its neighbors were classified as
unvoiced, it is reclassified as unvoiced.

In other cases, the pitch F0 of a voiced frame may be
multiplied or divided by an integer. Such a decision is made by
first determining a reference pitch value F0ref for the voiced
segment surrounding the voiced frame. The reference pitch
represents the most energetic series of consecutive frames with
similar pitch values within the segment. If F0ref and F0 are distant
then F0 is multiplied or divided by an integer that minimizes
their distance.

The smoothing for a voiced frame is carried out by
performing a weighted average of the pitch values of
neighboring voiced frames. Before the weighted average
operation unvoiced frames within the averaging interval are
assigned the pitch value of the middle frame. For other voiced
frames the pitch values is multiplied or divided by an integer,
such as they become as close as possible to the pitch of the
middle frame.

4. TONAL LANGUAGE RECOGNITION

4.1. Pitch Contour Preprocessing

In order to obtain the most effective and robust tonal language
recognition the pitch contour (either proprietary or standard,
after pitch tracking) is further processed. This is not a part of the
standard and is usually specific to each system. Here, we shall
briefly describe the proprietary preprocessing applied by the two
systems examined.

In the IBM tonal language recognition system, the
preprocessing consists of converting the pitch values to the log-
frequency domain and dynamic smoothing.

Given a voicing classification and pitch frequency value
F0(n) , the computation of the tonal parameter TP(IBM)(n) is done
as follows:
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N(n) is a uniformly distributed random noise, and �, � and � are
constant parameters.

In the Motorola tonal language recognition system, the tonal
parameter is computed as follows:
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4.2. Experimental Results

Both IBM and Motorola used CUDIGIT corpus as a part of the
evaluation. CUDIGIT is a Cantonese continuous digit string
database publicly available from the Chinese University of Hong
Kong. It contains spoken Cantonese digit strings, recorded by
50 speakers with a sampling rate of 8 kHz. For each digit string,
four signals were artificially generated: clean, car noise (10dB),
street noise (15dB) and babble noise (15dB). The training corpus
involves 38 speakers (total 21640 sentences). And the testing
corpus has another 12 speakers (total 6835 sentences).

The IBM rank-based continuous speech recognition system
[7] uses a phonetic representation for every word in the
vocabulary. Each phone is modeled with a three-state, HMM

Voicing class Pitch index Class index
Non-speech 0 0
Unvoiced-speech 0 1
Mixed-voiced speech > 0 0
Fully-voiced speech > 0 1
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(Hidden Markov Model), and acoustically dissimilar variants of
each state are identified using a decision tree structure. The IBM
proprietary pitch contour is extracted via time-domain
autocorrelation based pitch detection. The tonal parameter is
computed as in (5). The acoustic vector combines 12 MFCCs
and the tonal parameter, augmented with the first and second
temporal derivatives of the first 13 coordinates.

In addition to the common CUDIGIT database, CNDIGITS -
an IBM proprietary Mandarin database was used for the
evaluation. CNDIGIT is a Mandarin telephony digit string
database containing both landline and mobile recordings, all in 8
kHz. The training corpus has 3994 speakers (total 12742
sentences), while the testing corpus uses another 120 speakers
(total 1729 sentences).

CUDIGIT
clean car street babble entire set

CNDIGIT

-16.15 +5.65 +17.50 +14.14 +9.52 +1.30

Table 2: %Improvement in recognition accuracy when using
standard ETSI pitch instead of IBM pitch

Table 2 shows the improvement in recognition accuracy
(measured by word error rate) when replacing the IBM pitch by
the ETSI pitch. For both cases, acoustic model multi-style
training was performed in advance with the same features as in
the testing. Overall, it can be seen that the ETSI pitch has an
advantage over the IBM pitch in noisy situations.

Motorola used its HMM-based recognition engine with the
MLite++ search engine configuration as the evaluation test
bench. A proprietary, frequency domain, autocorrelation based,
pitch detection module [8] is used, and the tonal parameter is
computed as in (6). The acoustic vector combines 12 MFCCs
and the tonal parameter augmented with the first temporal
derivative of the first 13 coordinates.

In addition to the CUDIGIT database, another proprietary
Mandarin digit database was used for the evaluation. The
database contains 8 kHz close-talking microphone digit strings
recording, with 182 speakers (total 8699 sentences) in the
training set and 170 speakers (total 7509 sentences), recorded in
seven different environments, in the test set. Tables 3 and 4
summarize the evaluation results:

clean Car street babble entire set

+13.30 +18.98 +20.55 +9.39 +15.97

Table 3: %Improvement in recognition accuracy when using
ETSI pitch instead of Motorola pitch (CUDIGIT)

office airport Car park mall station street
entire

set
+2.00 +2.86 +2.47 +1.45 +2.16 -2.87 +1.59 +1.31

Table 4: %Improvement in recognition accuracy when using
ETSI pitch instead of Motorola pitch (Mandarin digits)

Both table 3 and table 4 show the improvement in
recognition accuracy (measured by word error rate) when
replacing the Motorola pitch by the ETSI pitch. In all cases
acoustic model multi-style training was performed in advance,
with the same features as in the testing. Overall, it can be seen

that the ETSI pitch outperforms the Motorola pitch in both
clean and noisy situations.

5. CONCLUSIONS

With a minimal bit-rate increase, enhanced tonal language
recognition can be obtained in the DSR environment by using
the extension of the standard ETSI DSR front-ends. The tonal
parameter extracted using the extended DSR features is more
noise robust than proprietary tonal parameters.

In addition to tonal language recognition, the pitch
information available at the server can be used for speech
reconstruction (also part of the standards). Another possible
usage of the pitch information is for performing emotion
detection.
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