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ABSTRACT 

Mel-frequency cepstral coefficients (MFCCs) are the most 
widely used features for speech recognition. These are 
derived from the power spectrum of the speech signal. 
Recently, the cepstral features derived from the modified 
group delay function (MGDF) have been studied by 
Murthy and Gadde [6] for speech recognition. In this 
paper, we propose to use the product of the power 
spectrum and the group delay function (GDF), and derive 
the MFCCs from the product spectrum. This spectrum 
combines the information from the magnitude spectrum 
as well as the phase spectrum. The MFCCs of the MGDF 
are also investigated in this paper. Results show that the 
cepstral features derived from the power spectrum 
perform better than that from the MGDF, and the product 
spectrum based features provide the best performance. 

1. INTRODUCTION 

Currently, the cepstral features are the most widely used 
features for speech recognition [1][2][3]. These features 
are derived from the power spectrum of the speech signal, 
while the phase spectrum is ignored. This is done mainly 
due to our traditional belief that the human auditory 
system is phase-deaf, i.e., it ignores phase spectrum and 
uses only magnitude spectrum for speech perception. 
Recently, it has been shown that the phase spectrum is 
useful in human speech perception [4]. This suggests that 
meaningful recognition features can be derived from the 
phase spectrum of the signal.  

Some features derived from the phase spectrum have 
been studied in the literature [5][6]. In [5], instantaneous 
frequencies derived from the phase spectrum were 
proposed as features and were shown to give performance 
comparable with Mel-frequency cepstral coefficient 
(MFCC) features. In [6], Murthy and Gadde have 
modified the group delay function (GDF) to suppress the 

zeroes caused by pitch peaks, noise and window effects, 
and applied the discrete cosine transform (DCT) on the 
modified GDF (MGDF) to get the cepstral coefficients. 
We call them modified-group-delay cepstral coefficients 
(MGDCCs). 

Since the Fourier transform of the speech signal is 
composed of the magnitude spectrum and the phase 
spectrum, the features derived from either the power 
spectrum or the phase spectrum have the limitation in 
representation of the signal. In this paper, we define the 
product spectrum as the product of the power spectrum 
and the GDF. It combines the magnitude spectrum and 
the phase spectrum. We derive the MFCCs from the 
product spectrum, and name them Mel-frequency product 
spectrum cepstral coefficients (MFPSCCs). We also 
investigate the MFCCs derived from the MGDF, named 
Mel-frequency modified-group-delay cepstral coefficients 
(MFMGDCCs). Results show that the MFMGDCCs and 
the MGDCCs are much worse than the MFCCs; the 
MFPSCCs give the best results. 

2. PRODUCT SPECTRUM 

Given a frame of speech signal ( ), 0 1x n n N= −� , the 

Fourier transform is given by 
( )( ) ( ) j
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The GDF is defined as 
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Equation (2) can be simplified as follows [7], 
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where ( )Y ω  is the Fourier transforms of ( )nx n , and the 

subscripts R  and I  denote the real and imaginary parts. 
Figure 1 (a), (b) and (c) show a frame (of duration 

T =30ms) of the vowel sound /i/, its power spectrum and 
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GDF, respectively. Before the Fourier transform, the 
speech signal has been pre-emphasized and multiplied 
with Hamming window. In the power spectrum, the 
formants are clearly visible. However, there are only 
meaningless peaks and valleys in the GDF. It occurs due 
to the power spectrum in the denominator in Equation (3). 
In order to make the GDF meaningful, a modification to 
the GDF has been proposed by replacing the power 

spectrum 2( )X ω  with the cepstrally smoothed power 

spectrum 2( ( ))S ω  in Equation (3) [8]. This gives the 

MGDF as follows: 

2
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Figure 1 (d) shows the MGDF of the signal. Since 
the MGDF has negative values, it needs to be clipped by a 
nonnegative floor before the calculation of the dB values. 
We adopt the dynamic range threshold [2], i.e., 
discarding the values below a certain threshold from the 
peak in the spectrum. Here the threshold is set as 60dB− .
In the MGDF shown in the figure, the first formant is 
visible to some extent, but the other formants are lost. 
Also, the MGDF has a rather flat envelope, which is 
caused by the presence of the smoothed power spectrum 
term in the denominator in Equation (4). 

In this paper, we define the product spectrum ( )Q ω

as the product of the power spectrum and the GDF as 
follows: 
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The product spectrum is influenced by both the 
magnitude spectrum and the phase spectrum. Figure 1 (e) 
shows the product spectrum of the signal. It enhances the 
region at the formants over the MGDF and has an 
envelope comparable to that of the power spectrum. 

3. COMPUTATION OF RECOGNITION 
FEATURES 

In order to investigate the performance of the product 
spectrum for speech recognition, we derive the MFCCs 
from the product spectrum, namely MFPSCCs. We 
compare the MFPSCCs with the following three features: 
1. MFCCs derived from the product spectrum. We still 

call them MFCCs. 
2. MGDCCs proposed in [6]. 
3. MFCCs derived from the MGDF. We call them 

MFMGDFCCs. 
The following sections present the computation of 

these four features. 

3.1. Mel-frequency cepstral coefficients 

The MFCCs are computed in the following four steps [2]: 
1. Compute the fast Fourier transform (FFT) spectrum 

of ( )x n , denoted by ( )X k .

2. Compute the power spectrum 2( )X k .

3. Apply a Mel-frequency filter-bank to 2( )X k  to get 

filter-bank energies (FBEs). 
4. Compute DCT of log FBEs to get the MFCCs. 
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Fig 1: A frame of vowel sound /i/, its power spectrum, 
group delay function (GDF), modified group delay 
function (MGDF) and product spectrum 

3.2. Modified-group-delay cepstral coefficients 

The MGDCCs are computed in the following four 
steps[6]: 

I - 126

➡ ➡



1. Compute the FFT spectrum of ( )x n  and ( )nx n .

Denote them by ( )X k  and ( )Y k .

2. Compute the cepstrally smoothed spectrum of ( )X k .

Denote it by ( )S k .

3. Compute the MGDF as follows: 

2
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where sign  is the sign of
2
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4. Compute the DCT of ( )p kτ�  to get the MGDCCs. 

3.3. Mel-frequency modified-group-delay cepstral 
coefficients 

The MFMGDCCs are computed in the following five 
steps: 
1. Compute the FFT spectrum of ( )x n  and ( )nx n .

Denote them by ( )X k  and ( )Y k .

2. Compute the cepstrally smoothed spectrum of ( )X k .

Denote it by ( )S k .

3. Compute the MGDF 

2
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σ is the threshold in dB. 
4. Apply a Mel-frequency filter-bank to ( )p kτ� to get the 

FBEs. 
5. Compute DCT of log FBEs to get the MFMGDCCs. 

3.4. Mel-frequency product-spectrum cepstral 
coefficients 

The MFPSCCs are computed in the following four steps: 
1. Compute the FFT spectrum of ( )x n  and ( )nx n .

Denote them by ( )X k  and ( )Y k .

2. Compute the product spectrum 
( ) max( ( ) ( ) ( ) ( ), )R R I IQ k X k Y k X k Y k ρ= +  (9) 

where 
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σ
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σ is the threshold in dB. 
3. Apply a Mel-frequency filter-bank to ( )Q k  to get the 

FBEs. 
4. Compute DCT of log FBEs to get the MFPSCCs. 

4. SPEECH RECOGNITION EXPERIMENTS 

The Aurora2 database [8] was used to evaluate the 
performance. This database can be used to evaluate 
performance of speech recognition algorithms in noisy 
conditions. The source speech for this database is the 
TIDigits, consisting of connected digits task spoken by 
American English talkers, sampled at 8 kHz. There are 
two training sets (clean training set and multi-condition 
training set) and three test set. Test set A and B have 
speech corrupted by different real-world additive noises at 
the SNRs from -5 dB to 20dB at the step of 5dB. Test set 
C is influenced by both additive noise and convolutional 
noise. 

In our experiments, we used the clean training set to 
train the HMMs, which were defined and trained in the 
same way as the Aurora2 baseline system [8]. In the 
calculation of all the features, the speech signal was 
analyzed every 10 ms with a frame width of 30 ms (with 
Hamming window and pre-emphasis). The Mel filter 
bank was designed with 23 frequency bands in the range 
from 64 Hz to 4 kHz. Finally, 12 cepstral coefficients 
were obtained. Cepstral mean subtraction was performed 
for all features. In the calculation of the MGDF, the 
cepstrally smoothed spectrum was derived from 13 lower-
order cepstral coefficients (including the coefficient of 
order 0). In the calculation of the MGDCCs, the two 
parameters were set as 0.4α =  and 0.9γ = . In the 

calculation of MFMGDCCs and the MFPSCCs, the 
threshold was defined as 60dBσ = − .

Tables 1 and 2 show the accuracies of the features on 
the three test sets. In Table 1, the features only include 12 
cepstral coefficients. In Table 2, the features include 12 
cepstral coefficients, energy, delta and accelerator 
coefficients, totally 39 coefficients. For each test set, the 
accuracies are averaged over different noises. The last 
column is the average over the SNRs between 20dB and 
0dB. From the results we may draw the following 
conclusions: 
1. The MFCCs provide better performance than the 

MGDCCs and the MFMGDCCs. It indicates that the 
power spectrum gives better performance than the 
phase spectrum. 

2. The MFMGDCCs obtain better performance than the 
MGDCCs at low SNRs, but worse at high SNRs or in 
clean condition. It indicates that the spectral 
smoothing with the Mel-frequency filter-bank is 
useful to derive a robust representation for 
mismatched conditions, but not helpful in matched 
condition. 

3. The MFPSCCs obtain the best performance. It 
indicates that the product spectrum is better than the 
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power spectrum and the phase spectrum for speech 
recognition. 

5. CONCLUSIONS 

In this paper, we have introduced the product spectrum as 
the product of the power spectrum and the GDF. The 
product spectrum combines the information from the 
magnitude spectrum as well as the phase spectrum of the 
speech signal. We derived the MFCCs from the product 
spectrum (i.e., MFPSCCs), and compared them with the 
cepstral features from the phase spectrum (i.e., MGDCCs 
and MFMGDCCs) and the MFCCs from the power 
spectrum. Results showed that the power spectrum gives 
better performance than the phase spectrum; the product 
spectrum gives the best performance. 
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SNR(dB) Test 
set 

Feature set 
Clean 20 15 10 5 0 -5 Ave 

MFCC 96.64 88.71 79.00 60.14 34.88 18.69 12.86 56.28 
MGDCC 81.32 70.22 60.53 47.00 28.49 10.85 -0.64 43.42 

MFMGDCC 55.32 50.69 48.43 42.02 32.47 19.90 12.09 38.70 
A

MFPSCC 96.41 89.11 80.08 63.17 37.62 19.98 13.38 57.99 
MFCC 96.64 90.14 82.98 66.87 41.94 22.54 13.75 60.90 

MGDCC 81.32 69.46 60.76 47.09 28.60 11.61 -0.16 43.50 
MFMGDCC 55.32 48.07 45.56 38.14 28.23 16.99 9.71 35.40 

B

MFPSCC 96.41 90.40 83.30 68.61 44.82 23.94 14.20 62.22 
MFCC 96.65 89.82 80.67 62.65 38.80 20.97 14.11 58.58 

MGDCC 81.46 68.66 54.76 36.95 17.74 1.38 -5.16 35.90 
MFMGDCC 52.47 51.86 49.23 43.35 34.46 22.56 12.86 40.29 

C

MFPSCC 96.32 90.41 81.59 65.33 42.18 22.66 14.49 60.43 
Table 1: Comparison of the features composed of only cepstral coefficients 

SNR(dB) Test 
set 

Feature set 
Clean 20 15 10 5 0 -5 Ave 

MFCC+E+∆+∆∆ 99.34 97.04 92.24 76.79 44.70 22.36 13.04 66.63 
MGDCC+E+∆+∆∆ 86.50 75.27 65.60 50.71 27.69 4.17 -10.26 44.69 

MFMGDCC+E+∆+∆∆ 81.06 73.76 68.96 61.09 45.39 25.73 13.20 54.98 
A

MFPSCC+E+∆+∆∆ 99.31 96.94 92.36 78.68 48.60 23.37 13.43 67.99 
MFCC+E+∆+∆∆ 99.34 97.81 94.28 82.73 54.48 26.93 14.26 71.25 

MGDCC+E+∆+∆∆ 86.50 73.58 64.37 48.84 26.07 5.06 -8.94 43.58 
MFMGDCC+E+∆+∆∆ 81.06 73.01 67.47 57.70 41.40 20.64 10.57 52.04 

B

MFPSCC+E+∆+∆∆ 99.31 97.77 94.22 84.08 57.86 28.45 14.66 72.48 
MFCC+E+∆+∆∆ 99.27 96.65 90.82 74.05 43.44 21.96 13.59 65.38 

MGDCC+E+∆+∆∆ 86.81 71.78 56.00 34.59 8.34 -13.91 -26.44 31.36 
MFMGDCC+E+∆+∆∆ 80.65 72.55 67.76 59.11 43.73 24.17 12.20 53.46 

C

MFPSCC+E+∆+∆∆ 99.28 96.73 91.43 76.31 46.82 23.29 13.99 66.91 
Table 2: Comparison of the features composed of cepstral coefficients, energy, delta and accelerator coefficients 
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