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ABSTRACT

In this paper, we propose a mathematical model to describe the re-

lation between the formant frequencies of speakers and show that

with the proposed affine model, speaker differences separate out as

translation factors when a “mel-like” warping is performed. Using

speech data we estimate the parameters of this warping function

and show that it is close to the usual mel-formula. This model is

motivated by Rohit et al.’s [1] shift-based non-uniform speaker-

normalization method, which provides improvement over the con-

ventional maximum-likelihood based speaker normalization meth-

ods. We therefore provide a unified framework that relates the re-

lationship between formants of speakers and method of removing

speakers difference (which involves mel-warping) in a neat math-

ematical framework which is substantiated by our recognition ex-

periments.

1. INTRODUCTION

A major source of variability in similar enunciations by differ-

ent speakers is attributed to the physiological differences in the

vocal-tract of the speakers. As an approximation, the vocal tract

is assumed to be a tube of uniform cross-section, in which case

the speaker variability is directly related to the vocal-tract length

(VTL). It has been found that VTL variation causes scaling in the

spectral domain [2] since the formant frequencies are inversely

proportional to length of the tube. Fant [3] and Umesh et al. [4, 5]

have shown that uniform/linear scaling of formant frequencies is

a very crude approximation and that the formant scaling is non-

linear and is phoneme dependent. The non-linearity of the scal-

ing factor has been modelled in various parametric forms [6, 7, 8]

but there is no specific motivation to choose a specific parametric

form.

In this paper, we propose an affine model to relate the for-

mant frequencies between speakers enunciating the same sound

and derive the corresponding frequency-warping function to per-

form speaker-normalization. The proposed affine model is moti-

vated by the desire to determine whether a “mel-like” frequency-

warping function can be derived from speech data alone, which

then shows an interesting relation between hearing and speech.

Then, corresponding to the proposed affine model relation between

speakers, we obtain a mapping from physical frequency to an alter-

nate domain such that in the alternate domain the warped spectra

are shifted versions of one and another for similar enunciations.
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We show that the frequency-warping function for affine model is

similar to the mel-warp function. The shift-based non-uniform

speaker normalization method proposed by Rohit et al. [1] can be

used to perform speaker normalization thus removing the speaker

differences, which appear as shift factors in warped domain. The

basic idea in [1] is to reformulate the linear frequency-warping

operation as a shift operation in an alternate domain to perform

speaker normalization.

The paper is organized as follows. In Section 2, we present

our study on determining the relationship between the formant fre-

quencies of speakers and derive the frequency-warping function

for the proposed affine-transformation. We numerically compute

the parameters of this frequency-warping function in Section 3.

In Section 4, we compare the warping function obtained from

the proposed method with log-warp and mel-warp functions. The

digit recognition accuracy before and after normalization is used

as the measure in evaluating the efficacy of normalization. The

frequency-warping functions computed in this paper are based on

vowel formant data from Peterson & Barney [9] and Hillenbrand

et al. [10] databases. We conclude by pointing out to the interest-

ing nature of the frequency-warping function associated with the

proposed model, which behaves like mel-warp function.

2. AFFINE MODEL TO DESCRIBE THE RELATION
BETWEEN FORMANT FREQUENCIES

We propose the following affine-transformation model relating for-

mant frequencies of the subject speaker and the reference speaker

as

(FR + A) = αRS (FS + A) (1)

where FR, FS are formant frequencies of the reference speaker, R
and the subject speaker, S respectively. αRS and A are the param-

eters of the model defined in Eq. (1), which are to be estimated

from the speech data. Eq. (1) is similar to linear scaling model,

FR = αRSFS except for factor of A. The scaling factor accord-

ing to affine-transformation model is defined as αRS = FR+A

FS+A
.

We assume A to be speaker-independent parameter and αRS to

be speaker-dependent parameter. In our analysis, the reference

speaker is taken to be the average female speaker of the database.

The chief motivating factor in choosing the model in Eq. (1) is

to study whether a “mel-like” frequency-warping function can be

obtained from speech data alone. Suppose if there exists a “mel-

like” warping function obtained from speech data alone, then this

shows certain connection between the speech production process

and the hearing mechanism. This justifies the use of mel-warp

function in speech recognition, not only from psychoacoustic point
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of view but also from the point of view of speaker normalization.

It also provides a neat mathematical framework that relates the

relationship between formant frequencies of speakers and shift-

based non-uniform speaker normalization method [1].

Consider the affine-transformation model in Eq. (1). It can be

rewritten as (
1 +

FR
A

)
= αRS

(
1 +

FS
A

)
, A �= 0 (2)

Taking logarithms on both sides of Eq. (2), we have

log

(
1 +

FR
A

)
= log αRS + log

(
1 +

FS
A

)
(3)

Define ν = log
(
1 + f

A

)
, then νR = νS+log αRS , where νR and

νS are the warped frequencies of f = FR and f = FS respec-

tively. Hence, the warped frequencies appear as shifted or trans-

lated versions in ν-domain and the translation factor is speaker-

dependent. The warping function to do speaker normalization us-

ing affine-transformation model is given by,

ν = log

(
1 +

f

A

)
(4)

which is interestingly similar to mel-warp function. For example,

Fant’s technical mel-formula is given by

ηfant =
1000

log 2
log10

(
1 +

f

1000

)

while another formula that is commonly used for mel-scale is

ηmel = 2595 log10

(
1 +

f

700

)
(5)

As an illustration of the above idea, let us consider uniform

scaling wherein the formant frequencies are assumed to be scaled

versions of one another, or more commonly we assume spectral

envelopes of two speakers, say A and B are scaled versions of

each other, i.e. SA(f) = SB(f ′) and f ′ = αABf . It can be easily

seen that in the log-warped domain, i.e. λ = log(f) the spectral

envelopes are shifted versions of each other i.e.,

sA(λ) = SA(f = eλ) = SB(αABeλ) = sB(λ + log αAB) (6)

We now consider the proposed affine-transformation in Eq. (1),

i.e., f ′ = αABf+A (αAB − 1). It is easy to see that, in the warped

domain, ν = log
(
1 + f

A

)
, the spectral envelopes are shifted ver-

sions of each other i.e.,

sA(ν) = SA(f = A (eν − 1))

= SB(f ′ = αABf + A (αAB − 1))

= SB(AαAB (eν − 1) + A (αAB − 1))

= SB
(
A

(
elog αAB+ν − 1

))
= sB(ν + log αAB) (7)

The warped spectra appear as shifted versions of one and another

in the warped domain, ν = log
(
1 + f

A

)
. This idea is exploited to

do speaker-normalization in [1].

The cepstral coefficients, which are the defacto features used

in state-of-the-art ASRs, are computed on warped spectra. Since,

the spectra appear as translated versions in the warped domain, the

cepstral coefficients computed on the warped spectra for a given

speaker will be modulated version of that of the reference speaker.

To make the theory complete, let us define W : [0, π] → [0, π]
such that ω → ν̂ = W (ω) and ω, ν̂ ∈ [0, π]. Let fs be the

sampling frequency in f -domain. So, ω = 2πf
fs

. ω is the digital

frequency in rad/s and f is the analog frequency in Hz. Eq. (1) can

be rewritten as (
ωRfs

2π
+ A

)
= αRS

(
ωSfs

2π
+ A

)

log

(
1 +

ωRfs

2πA

)
= log αRS + log

(
1 +

ωSfs

2πA

)

Let W ′(ω) = log
(
1 + ωfs

2πA

)
. It is clear that W ′(0) = 0 and

W ′(π) = log
(
1 + fs

2A

)
. Define ν̂ = W (ω) = π

W ′(π)
W ′(ω).

Now W (0) = 0 and W (π) = π. Hence the frequency-warping

function is given as

ν̂ = W (ω) =
π

log
(
1 + fs

2A

) log

(
1 +

ωfs

2πA

)
(8)

Since fs and A are constants, define K1 = π

log(1+ fs
2A )

and K2 =

2πA
fs

. The warping function can be expressed as

ν̂ = W (ω) = K1 log

(
1 +

ω

K2

)
(9)

K1 and K2 are dependent on A and the determination of A defines

the warping function W (ω).

The model in Eq. (1), as mentioned earlier, is motivated by

the desire to determine whether any connection exists between the

speech production process and the hearing mechanism. So, we

made a comprehensive study on the relationship between speak-

ers, by finding out different models, that normalize the speakers.

The analysis is carried out on the formant data of vowels collected

from 14 “representative” speakers for both Peterson & Barney

(PnB) and Hillenbrand (HiL) databases. 5 male, 5 female and 4
child “representative” speakers for both the databases are obtained

for experimentation. A representative speaker is computed as the

mean of formant frequencies of a set of speakers. TableCurve2D

curve-fitting software package is used to fit relationships between

different combinations of subject and reference speakers. Table 1

shows the best simple curvefits obtained by TableCurve2D for the

vowel data of PnB and HiL databases, which are ranked according

to the accuracy of fit.

3. NUMERICAL COMPUTATION OF ‘A’

The numerical computation of A involves fitting the affine-trans-

formation model in Eq. (1) for the data points involving the for-

mant frequencies of the reference and subject speaker. The ex-

periment to compute A is carried out on the formant data from PnB

and HiL databases. Each speaker in both of these databases is char-

acterized by formant vector (F1, F2, F3). PnB and HiL databases

have 10 and 12 vowels uttered respectively by each subject. Hence

the number of data points involving the formant frequencies of a

given speaker of PnB and HiL is 30 and 36 respectively. The aver-

age female speaker of the respective databases is chosen to be the

reference speaker. For each subject speaker of a given database, α
and A are computed with respect to the reference speaker and the

mean estimate of A is computed for each of the databases. It has
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Model Equations
Rank Peterson & Barney Hillenbrand

1 y = ax + b(a − 1) y = ax + b(a − 1)

2 y = a + bxc y = a + be−x/c

3 y = axb y = axb

4 y = a + be−x/c y0.5 = a + bx0.5

5 y0.5 = a + bx0.5 log(y) = a + b log(x)
6 y = a + bx y = a + bx
7 log(y) = a + b log(x) y = a + bxc

8 y−1 = a + bx−1 y−1 = a + bx−1

9 y2 = a + bx2 y2 = a + bx2

10 y = a + bx
log(x)

y = a + bx
log(x)

11 y0.5 = a + bx0.5 log(x) y0.5 = a + bx0.5 log(x)
12 y2 = a + bx2 log(x) y = a + bx log(x)
13 y = a + bx log(x) y2 = a + bx2 log(x)

14 log(y) = a + b (log(x))2 log(y) = a + b (log(x))2

15 y−1 = a + bx−1 log(x) y−1 = a + bx−1 log(x)

Table 1. Best simple curvefits for vowel formant data of Peterson

& Barney and Hillenbrand databases.

to be noted that A should be positive. But, while performing the

global optimization, there are lot of subjects for whom the value

of A saturated to the lower bound of A (i.e. 0) and actually for such

speakers, the global optimum occurs at some negative value of A.

If we neglect the speakers who have A < 0, then the mean estimate

of A computed is not a good estimate. Hence, a different method

is used to compute the values of A and α.

Let us consider that a given database has a total of M subjects

of which K are female subjects. The estimates of α and A for a

given subject is computed as follows.

FRi = αijFSj + Aij (αij − 1) (10)

and i = 1, 2, · · · , K; j = 1, 2, · · · , M . FRi and FSj are the data

points of formant frequencies (of size 30 or 36 depending upon the

database) of ith reference speaker (average female speaker) and

jth subject speaker respectively. The average female speaker i.e.

reference speaker is given by

FR =
1

K

K∑
i=1

FRi

=
1

K

K∑
i=1

(
αijFSj + Aij (αij − 1)

)

= FSj

1

K

K∑
i=1

αij +
1

K

K∑
i=1

Aij (αij − 1) (11)

But from our model in Eq. (1), we require

FR = αjFSj + Aj (αj − 1) , j = 1, 2, · · · , M (12)

It is clear from Eq. (11) and Eq. (12) that

αj =
1

K

K∑
i=1

αij (13)

Aj =

∑K
i=1 Aij (αij − 1)∑K

i=1 (αij − 1)
, j = 1, 2, · · · , M (14)
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Fig. 1. Histogram of the speaker-dependent parameter, α in

speaker normalization using affine-transformation for (a) Peterson

& Barney database (b) Hillenbrand database.

The mean estimate of A for a given database is computed as

A =
1

M

M∑
j=1

Aj (15)

The value of A has been estimated to be 508.04 for PnB database

and 495.67 for HiL database. The warping function for PnB and

HiL databases is given by

ν =

{
log

(
1 + f

508.04

)
for PnB database,

log
(
1 + f

495.67

)
for HiL database.

(16)

Figure 1 shows the histograms of αRS for male, female and

child speakers of PnB and HiL databases. The trend in the esti-

mates of αRS across the genders shows the existence of gender

separability. Also, since average female is considered as the ref-

erence subject, the female speakers are centered around α = 1
warping factor.

4. COMPARISON OF LOG-WARP, MEL-WARP AND
AFFINE-WARP FUNCTIONS

Figure 2 shows the plot of log-warp, mel-warp and affine-warp

functions. Since the value of A is almost same for both PnB and

HiL databases, the affine-warp function for both of these databases

appear same. We would like to remind the reader that A has been

obtained from the study of vowels only. It is very interesting to

note that the affine-warp function is almost same as mel-warp

function. The mel-warp function in Eq. (5) is actually obtained

by fitting a curve to Stevens & Volkman [11] data points. A model

similar to Eq. (4) is fitted in [12], which computes the value of

A to be 657.6. The Stevens & Volkman data is obtained by con-

ducting experiments related to the human auditory response with

“human perception”. It has been found from this data that human

ear behaves on mel-scale. Now, our experiments on speaker nor-

malization, which is conducted on speech data alone shows the re-

quired frequency-warping to be close to mel-scale. This is indeed
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Fig. 2. Comparison of warping function, ν derived using affine-

transformation model with log-warp and mel-warp functions. The

affine-warp functions for Peterson & Barney (PnB) and Hillen-

brand (HiL) databases overlap, which is obvious from Eq. (16).

very interesting and may explain mel-scale not only from the psy-

choacoustic point of view but also from the view point of speaker

normalization.

The normalization performance of different warping functions

is evaluated by computing the recognition accuracies on a tele-

phone based connected word recognition task. The data for our

digit recognition experiment is collected from Numbers v1.0cd
corpus of OGI containing 2169 utterances from male and female

speakers. A mismatched test set derived from other than Numbers
corpus consists of 2798 utterances from children. Eleven word

models are generated for 1 to 9, zero, oh along with one silence

model. The word models and silence model are modelled as 16
and 3 states respectively. Word models have 5 diagonal Gaussian

mixtures per state and silence model has 6 Gaussian mixtures per

state. Speech signals are sectioned with an overlapping window

of 20 ms frame size and with an overlap of 10 ms. A first-order

backward difference pre-emphasis with factor 0.97 is computed.

The spectral features are computed using Weighted Overlap Seg-

ment Averaging (WOSA) technique [1] with each frame being sec-

tioned into hamming windowed sub-frames of 64 samples with an

overlap of 45 samples. The cepstral features are then computed

for recognition task. Table 2 shows the recognition performance

of the digit recognizer, before and after normalization for differ-

ent warping functions. The proposed affine model-based warping

functions perform better than log-warp function and approach the

performance of mel-warp function.

5. DISCUSSION & CONCLUSION

We have proposed an affine-model to describe the relationship be-

tween formant frequencies of any two speakers enunciating the

same sound. The motivation for proposing the above model is

based on the fact that the warping function necessary to do nor-

malization is similar to mel-warp function. This study, therefore,

provides an interesting model to use the mel-warp function in auto-

matic speech recognition, not only from the psychoacoustic point

% Recognition Adults Children

accuracy Rb Rn Rb Rn

Mel-warp 96.98 97.48 86.27 92.04
Log-warp 96.76 97.15 86.96 90.80

Affine-PnB 97.03 97.44 86.51 92.00
Affine-HiL 96.96 97.43 86.58 91.98

Table 2. Recognition performance of various frequency warp-

ing functions on a digit recognizer before and after normalization.

Rb and Rn represent the percentage recognition accuracies before

(baseline) and after normalization respectively.

of view but also from the view point of speaker normalization. We

also provide a unified mathematical framework relating the pro-

posed affine-transformation and shift-based non-uniform speaker

normalization method. Using digit recognition results as a perfor-

mance measure, we conclude that our proposed method performs

similar to the shift-based speaker-normalization method of [1],

which clearly showed improvement over the conventional speaker-

normalization method for a digit recognition task.
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