
m

n kmwkmnxmwmnxk |)()()()(|)(

A NOVEL METHOD FOR COMPUTATION OF PERIODICITY, APERIODICITY AND PITCH OF SPEECH SIGNALS 
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ABSTRACT

This paper presents improvements to our previously 

proposed algorithm to compute the proportion of periodic and 

aperiodic energies in speech signals and to estimate the pitch 

period. Although previously the periodic and aperiodic energies 

were estimated independent of each other at each frame, a binary 

decision was made at each of the non-silent channels. In this 

paper, we present an extension that replaces the binary decision 

with a measure of degree of periodicity and aperiodicity in each 

channel. Evaluation on synthetic speech-like data shows a better 

agreement in the estimated SNR and the actual SNR using with 

this improvement. Moreover, in the task of estimating the SNRs, 

this method significantly outperforms a method based on 

cepstral coefficients. When evaluated on a speech database, the 

periodicity and aperiodicity accuracy increased significantly. 

The previous pitch detector was prone to commiting pitch 

doubling and pitch halving errors and was unable to reliably 

detect pitch in weakly periodic regions. Significant changes have 

reduced the error rate by 28.7%. The pitch detector is also able 

to accurately detect the pitch of the synthetic speech-like signals 

and to capture the jitter present in the signals. 

1. INTRODUCTION 

Most of the algorithms used to detect aperiodicity are 

passive, i.e. non-silent regions with little or no voicing are 

labelled as aperiodic and the amount of aperiodicity is estimated 

using indirect measures like zero crossing rate, high-frequency 

energy and ratio of high-frequency energy to low-frequency 

energy. These measures are prone to making errors in situations 

where the signal has simultaneous strong components of both 

periodic and aperiodic energies, as is the case with some of the 

voiced fricatives. Such methods will also be only marginally 

useful in distinguishing high frequency periodic energy from 

high frequency aperiodic energy. A system that can reliably 

detect and quantify the amount of periodic vs. aperiodic energy 

in the speech signal has many applications including speech 

coding, speech recognition and speaker recognition. The 

inherent problem in developing such a system is to define 

aperiodicity in such a way that maximum and minimum possible 

aperiodicity roughly correspond to minimum and maximum 

possible periodicity respectively in a given signal but at the 

same time aperiodicity should not merely be a complement of 

periodicity. The system presented in [1] defined periodicity as 

the degree of regularity in the minima of the Average Magnitude 

Difference Function (AMDF) computed from the envelope of 

the filter channels.   Aperiodicity was related to the degree of 

randomness in the minima of the AMDF waveform.  For a given 

time instance, the system was able to grade the amount of 

periodicity and aperiodicity across the frequency channels, but it 

made a binary decision in each of the channels. The result is that 

the output of the system had a fine temporal resolution but a 

crude binary spectral resolution of the amount of 

periodicity/aperiodicity. The modifications presented here are 

able to successfully grade the amount of periodicity/aperiodicity 

at each of the frequency channels. 

The structure of the periodicity/aperiodicity system is very 

similar to a pitch detection algorithm and includes estimation of 

the pitch of the periodic component of the signal. Pitch (the 

fundamental frequency of voiced speech) is defined as the 

frequency of vocal fold vibration. The pitch algorithm is 

relatively simply and is independent of the voicing decisions 

made by the system. The pitch detection algorithm presented at 

[2] was very prone to committing pitch halving and doubling 

errors and was unable to reliably detect pitch in weakly periodic 

regions and near the voiced-unvoiced boundaries. In this paper 

we present improvements to our Pitch Detection Algorithm 

(PDA) and also compare our pitch detector with the other 

existing PDAs. These improvements were able to reduce the 

error rate by 28.7%. 

2.  SYSTEM REVIEW 

This section provides a brief review of the original algorithm. 

The signal analysis begins by passing the signal through a 60-

channel auditory gammatone filterbank with Characteristic 

Frequencies (CFs) based on physiological data[3]. The temporal 

envelope of each channel is computed using the Hilbert 

transform. The channel envelope of every non-silent channel is 

analyzed for periodicity and aperiodicity using the short-time 

Average Magnitude Difference Function (AMDF). The AMDF 

is defined as: 

where x(n) is the envelope signal, k is the lag value in samples 

and w(m) is the window. For the work presented here, w(m) is a 

rectangular window of 20ms. 

2.1. Periodicity & Aperiodicity Calculation 

For a strictly periodic signal, the AMDF will attain minima 

(referred as dips) equal to one at lags equivalent to the pitch 

period and its integer multiples. For aperiodic signals these dips 

are at random locations (Figure 1(a)). When these strengths are 

added across all the channels for each lag, the output will have 

clusters at the pitch value and its integer multiples for strongly 

periodic frames. For aperiodic frams the dips will be randomly 
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scattered over the range of possible lag values and will have no 

prominent clusters (Figure 1(b)). 

For each cluster a periodicity confidence measure is computed 

by summing the strengths of all the dips that lie within a certain 

neighborhood of the peak of the cluster. Sum of the strenghts of 

the dips outside this neighborhood is the aperiodicty confidence 

of that cluster and such dips are labeled as spurious dips. The 

difference of periodicity confidence and aperiodicity confidence

is the summary confidence of the cluster. All the clusters with 

negative summary confidence are dissolved. If no cluster 

survives this test, the frame is likely to be aperiodic. Final 

decision about the periodicity and aperiodicity of the frame is 

postponed till all the channels in the frame are analyzed. 

Periodic channels are defined as channel with less than two 

spurious dips. Aperiodic channels are defined as the channels 

with more than one spurious dip.

Figure 2 shows the decisions made for four channels from the 

voiced fricative /z/. Notice that channels (a) and (b) have no dips 

outside the cluster tolerances, i.e. no spurious dips, and so they 

are classified as periodic.  Channels (c) and (d), on the other 

hand, have a number of spurious dips and, therefore, they are 

classified as aperiodic.   

Notice that the periodicity/aperiodicity decision is binary at the 

channel level. In particular, there is no contribution of the 

strength of dips towards the channel periodicity or of the number 

of spurious dips towards channel aperiodicity. As a result, 

channels (a) and (b) are both labelled periodic and there is no 

distinction that specifies that channel (a) is strongly periodic 

compared to the weakly periodic channel (b). Similarly, channel 

(c) is strongly aperiodic compared to the weakly aperiodic 

channel (d) although this gradation is again not specified.

Section 3  describes the modifications made to change this 

binary decision into a graded decision.  

2.2. Pitch Detection 

The system outputs a pitch value only when at least one of the 

clusters has a positive summary confidence. The peak of the 

cluster with the maximum summary confidence is the pitch 

estimate for that frame and the corresponding summary 

confidence is the pitch confidence. When two or more clusters 

have comparable summary confidences, the cluster closest to the 

previous pitch values is chosen. The details of this pitch detector 

can be found in [2]. 

There are two types of pitch errors.  First, no pitch is 

detected in very low amplitude regions (e.g., a weak /w/) and in 

some transition regions between voiced and unvoiced sounds.  In 

both cases, the cluster strengths are significantly lower than they 

are in high amplitude periodic regions (e.g., the middle of a 

vowel). As a result, the aperiodicity confidences for clusters in 

these frames are equal to or more than the periodicity 

confidences and the clusters have non-positive summary 

confidences. Thus no pitch is outputted and this leads to errors. 

The second type of error is the fluctuations in the 

estimated pitch values. It was shown in [2] that the PDA is prone 

to making a significant amount of halving errors. The 

modifications proposed in section 3 refine the continuity 

constraints but are also able to track the valid fluctuations in 

pitch contour. The modifications also address the issue of having 

no pitch outputs in some of the weak amplitude signals. 

3. PROPOSED IMPROVEMENTS 

3.1. Graded Periodicity/Aperiodicity Channel Decision 

Since the strength of the AMDF dips found at multiples of the 

pitch period gives an estimate of the signal periodicity, a natural 

improvement would be to include this parameter in our 

measurements. At the same time, quantifying the randomness in 

the distribution of the dips can capture the degree of 

aperiodicity.  

In our new periodicity measurements, these objectives are 

accomplished by weighting the normalized strength of each dip 

such that dips closer to the pitch period and its multiples 

contribute more towards periodicity. This contribution decreases 

rapidly with increasing distance from these locations. 

Consequently, we found that exponentially decaying weights 

perform better than linearly decaying weights. Because speech is 

only expected to be quasi-periodic, the weights in the immediate 

vicinity of a pitch multiple are set to unity so that dips closer to 

pitch multiples are not unduly penalized.  

If a signal is periodic, it is expected that equally spaced dips 

of similar strengths will be present in the AMDF. To account for 

this, we consider regions around each pitch multiple separately, 

i.e. If the detected pitch of the frame is such that it can 

accommodate N pitch multiples in the lags, then each of the 

[nF0-F0/2: nF+nF0/2] for  n=1,2..N regions will be analyzed 

separately for periodicity. Each region is called a channel cluster 

and its corresponding periodicity the cluster periodicity. The 

following equation shows the calculation of the cluster 

periodicity for the jth cluster.

(a) (b) 

Fig. 1. Part (a) shows the AMDF and the prominent dips for a 

typical aperiodic channel (top) and for a typical periodic channel 

(bottom). Part (b) shows the AMDF dips clustered across all the 

channels in a typical aperiodic frame (top) and a typical periodic 

frame (bottom).
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The cluster periodicity can at most equal one; if multiple dips 

are present in the cluster, the most significant dip closest to the 

pitch period location contributes its normalized and weighted 

strength and the other dips contribute at most one minus this 

value. The average across the periodic clusters is taken as the 

preliminary value of periodicity.   

The AMDF dips in channels that are predominantly 

aperiodic are located far from the pitch period and its multiples, 

are small in amplitude, and are generally numerous. The 

preliminary measurement of aperiodicity also utilizes weighted 

strengths of AMDF dips with two important considerations. 

First, dips far from the pitch period and its multiples should 

contribute close to their full value towards aperiodicity.  Thus, 

logarithmically increasing weights are used. Second, the strength 

of aperiodicity should be directly related to the number of 

spurious dips.  Thus, we take the sum of the dips instead of the 

mean across the clusters.   

It should be noted that the sum of the preliminary periodicity 

and aperiodicity measures may be greater than one. If this is the 

case, they are scaled down proportionally so that the sum equals 

one. This approach makes it possible to obtain overall values of 

aperiodicity close to unity.  These periodicity and aperiodicity 

measures are then multiplied by the corresponding channel 

energies and summed across the channels to get the proportion 

of periodic and aperiodic energies for the frame. 

3.2. Pitch Improvements 

For a typical low amplitude signal the strength of the dips in is 

much smaller compared to that for a high amplitude periodic.  In 

fact, the strength of the dips in the low amplitude signal are 

comparable to those in computed from an aperiodic frame. As a 

result the aperiodicity confidence will be equal to or greater than 

the periodicity confidence resulting in no clusters and hence no 

pitch output. It has been noticed that the ratio of the number of 

lags that have non-zero values to the total number of lags is 

much smaller in the case of the weakly periodic frame than it is 

for the aperiodic frame. This ratio was trained using a small 

amount of pilot data and it was found that a value of 0.55 gives 

significant separation between weakly periodic frames and 

aperiodic frames. When the periodicity measure of a cluster falls 

below a pre-determined threshold called per_thresh, the ratio of 

number of lags with non-zero values to the total number of lags 

is computed and if it below 0.55 the aperiodicity confidence is 

set to zero. Thus some clusters will have a positive summary 

confidence and the corresponding frame will have a pitch value. 

When the ratio is above 0.55 the apriodicity confidence is 

computed and subtracted from the periodicity confidence. This 

aviods outputting pitch values for aperiodic frames. 

The second avenue for improvement was to reduce the errors 

caused by pitch halving and doubling. This is accomplished as 

follows: At the initial frames of the utterance the peak 

corresponding to the cluster with maximum summary confidence 

is chosen as the pitch value. As the analysis progresses, clusters 

are forced at the median of the pitch values from the previous 

frames and at its integer multiples. By default, the peak 

corresponding to the first cluster is chosen as the pitch value. To 

allow the flexibility to change the pitch value, a cluster is 

formed at half the pitch value and if its summary confidence is 

greater than per_thresh the pitch value is set to the peak of this 

cluster. This allows the system to rectify its pitch halving errors. 

If the summary confidence of a cluster at the integer multiples of 

pitch value is greater than 2*per_thresh and the summary 

confidence of the first cluster (i.e. cluster at pitch value) is less 

than the per_thresh the pitch value is changed to the peak of this 

new cluster. This allows the system to rectify the pitch doubling 

errors. At the same time, these criteria allow the algorithm to 

track the pitch correctly even when it is actually halved.  

4. RESULTS 

The system was evaluated on a speech database that had 

Electroglottograh (EGG) data recorded simultaneously and on a 

database of synthetic speech like signals. The speech database 

consists of 50 utterances spoken by one male and one female 

subject in clean environment [4]. The synthetic database is the 

same as the one used in [1].  This database consists of signals 

that are outputs of a 50-pole LPC  synthesis filter when it is 

excited by  a pulse train corrupted with Gaussian white noise. 

Pulses at frequencies 131 Hz, 120 Hz and 200 Hz at SNRs 

varying from Inf to –5dB.  To evaluate the performance of our 

periodic and aperiodic detector, we compared the SNR based on 

these measures with the known SNR of the synthetic signal and 

with the SNRs obtained by our old method. We define the SNR 

based on our measures as: 

)/(log*10 10 uvSNR

where  is the periodic energy and u is the aperiodic energy 

calculated by our detector. Fig. 3 shows the actual SNR versus 

the computed SNR for the pulse with frequency 131 Hz for the 

old system and for the refined system after incorportating the 

above mentioned modifications. 

As can be inferred from the figure, the improved system is able 

to track the SNR more closely compared to the old system. To  

Fig. 2. The left two frames show periodic channels 

whereas the frames on the right show aperiodic channels.
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compare the performance of our parameters with that of other 

standard set of parameters we also evaluated the SNR using 

cepstral coefficients. The high pass liftered version of cepstrum 

was used for this purpose. The maximum value of cepstrum in a 

small neighborhood of the expected pitch value was taken as the 

periodicity confidence and the average of the rest of the 

cepstrum was taken as the aperiodicity confidence. The SNR 

values obtained using the cepstral coefficients are shown in 

Figure 3. Its evident from the figure that our periodicity and 

aperiodicity measures outperform the cepstral coefficients. 

The performace of the system was also evaluated on the 

natural speech database.  The evaluation was made on a frame 

basis at a frame rate of 2.5ms. The periodicity accuracy is 

defined as the ratio of  the number of non-silent frames where 

the periodicity measure was above 0.3 and the EGG output was 

non-zero. The aperiodicity accuracy is defined as the ratio of the 

number of  non-silent frames where the aperiodicity measure 

was above 0.3 and the EGG data was zero. The previous system 

had a periodicity accuracy of  88.8% whereas the refined system 

give periodicity accuracy of  95.1%. This is a significant 

improvement. The aperiodicity accuracy for the old system was 

92.7% whereas it is 87.8% for the new system. Although there is 

a slight drop in the aperiodicity accuracy the overall 

performance is improved. 

The pitch detection algorithm was also evaluated on this 

database. The refined pitch detector is able to reduce the pitch 

error from 9.8% to 6.5% thus giving a 27.8 % reduction in the 

relative error. 

5. CONCLUSION 

The refinements proposed here have significantly improved the 

performance of the system. One application of the 

periodicity/aperiodicity measures and pitch will be in our speech 

recognition algorithms. These parameters also form a part of a 

landmark detection system where the main emphasis is broad 

classification of speech signals using strictly temporal cues. 
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Fig. 3 The dashed line shows the actual SNR. The line with 

triangles represents the old results. The line with squares 

represents the new results. The dashed line with circles shows

the results obtained from cepstral coefficients. 
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