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ABSTRACT

This work proposes a technique for reconstructing an acoustic
speech signal solely from a stream of mel-frequency cepstral
coefficients (MFCCs). Previous speech reconstruction methods
have required an additional pitch element, but this work
proposes two maximum a posteriori (MAP) methods for
predicting pitch from the MFCC vectors themselves. The first
method is based on a Gaussian mixture model (GMM) while the
second scheme utilises the temporal correlation available from a
hidden Markov model (HMM) framework. A formal
measurement of both frame classification accuracy and RMS
pitch error shows that an HMM-based scheme with 5 clusters per
state is able to correctly classify over 94% of frames and has an
RMS pitch error of 3.1Hz in comparison to a reference pitch.
Informal listening tests and analysis of spectrograms reveals that
speech reconstructed solely from the MFCC vectors is almost
indistinguishable from that using the reference pitch.

1. INTRODUCTION

In recent years the performance of speech recognition systems
from mobile devices has been improved through the use of
distributed speech recognition (DSR) [1]. Such systems replace
low bit-rate speech codecs with the front-end processing
component of the speech recogniser and transmit feature vectors
(such as MFCCs) directly to the speech recogniser. The removal
of the speech codec gives increased recognition accuracy,
particular in the presence of acoustic noise or channel errors.
However, because feature vectors are designed to be a compact
representation, optimized for discriminating between different
speech sounds, they have been considered as containing
insufficient information to enable reconstruction of the original
speech signal. In particular valuable speaker information, such as
pitch, is lost. It is therefore not possible to simply invert the
stages involved in MFCC extraction to re-create the acoustic
speech signal.

However, several schemes [2,3] have been proposed recently
which enable speech to be reconstructed from MFCC vectors
through the inclusion of pitch information. This pitch value is
included in the information extracted from the speech signal on
the terminal device and is transmitted as an additional element of
the feature vector.

The aim of this work is to predict the pitch frequency from
the MFCC vector which will therefore enable speech
reconstruction to be achieved solely from the MFCC stream.
This is motivated by several studies which have indicated that
class-dependent correlation exists between the spectral envelope
and pitch [4,5,6,7]. This correlation has been exploited to

provide improved phoneme recognition accuracy through class-
based normalisation of the spectral envelope by the pitch [4,5].
The correlation has also been utilised to increase the perceptual
quality of concatenative text-to-speech synthesis by adjusting the
magnitude spectrum of speech units in accordance to pitch
modifications [6]. Prediction of the pitch from modified spectral
envelopes has also made use of this correlation for voice
conversion applications [7].

A brief description of speech reconstruction from MFCC
vectors and pitch using the sinusoidal model is presented in
section 2. Section 3 introduces two methods for predicting pitch
from MFCC vectors. The first is based on a Gaussian mixture
model (GMM) while the second utilises the temporal correlation
of pitch through a hidden Markov model. Measurements of the
predicted pitch accuracy are described in section 4 together with
an examination of the resultant reconstructed speech signal. A
conclusion is made in section 5.

2. SPEECH RECONSTRUCTION

The sinusoidal model [8] synthesises a speech signal, x(n), by
summing together L sinusoids of varying amplitude, Al,
frequency, ωl, and phase, θl,
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An estimate of the spectral envelope can be calculated from an
MFCC vector by zero padding and applying an inverse discrete
cosine transform (IDCT). An exponential operation applied to
the resulting log mel-filterbank estimate, followed by
interpolation, gives a smoothed magnitude spectral estimate,

( )ωX̂  [2]. Normalisation must then be applied to remove the

effect of pre-emphasis and the non-linear filterbank channel
bandwidths [3]. The frequency of the sinusoidal components, ωl,
can be estimated from the pitch frequency, ω0, by assuming a
harmonic relationship, i.e. 0ωω ll = . The amplitude of the

sinusoidal components, Al, can be computed from the smoothed
magnitude spectral estimate,

( )0
ˆ ωlXAl = (2)

The phase offset, θl, is calculated from two components; one
relating to the speech excitation and the other to the vocal tract
[8]. Therefore, given an MFCC vector and pitch estimate, a
frame of reconstructed speech can be generated. It is clear from
this analysis that accurate pitch estimation is vital for
synthesizing realistic sounding speech.
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3. PITCH PREDICTION

Two methods are proposed for predicting the pitch frequency
from a stream of MFCC vectors. A method is also introduced for
classifying MFCC vectors as representing either voiced or
unvoiced speech. These scheme are based on modeling the joint
density of the MFCC vector, x, and pitch frequency, f. From a
set of training data, a series of augmented feature vectors, y, are
extracted,

[ ]Tf,xy = (3)

Currently in this work the MFCC vector comprises static
coefficients 0 to 12. The pitch frequency is estimated with a
comb function [9] and is subsequently manually corrected. For
unvoiced frames the pitch frequency is set to zero. Specific
training set and feature extraction details are given in section 4.

3.1 GMM-based prediction

This system models the joint distribution of the MFCC vector
and pitch using a GMM. From the training set of augmented
vectors, unsupervised clustering is implemented using the
expectation-maximisation (EM) algorithm to produce a set of K
clusters. Each of these clusters is represented by a Gaussian
probability density function (PDF) with mean and covariance,
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This set of K clusters models the joint density of pitch and
MFCC. Using these cluster-based correlations a prediction of the

pitch frequency, if̂ , can be made from an input MFCC vector,

xi. The prediction can be made from the closest cluster, in some
sense, to the input MFCC vector or by taking a weighted
contribution from all clusters.

The closest cluster, k, to the input MFCC vector, xi, is given,

= k
x
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k
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where x
ki cxp  is the marginal distribution of the MFCC vector

for the kth cluster and αk is the prior probability of that cluster.
Using the joint density of pitch and MFCC a MAP [10]
prediction of the pitch can be made,
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To avoid the problem of identifying the most appropriate
cluster, an alternative method combines the MAP pitch
prediction from all K clusters in the GMM,
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The term hk(xi) weights the contribution from each cluster in the
GMM by the posterior probability of xi belonging to it,
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where αk and x
ki cxp  are as defined for equation (5).

3.2 HMM-based prediction

The unsupervised training used in the GMM does not fully
exploit the class-based correlation between the MFCC vector
and pitch or the temporal correlation of the pitch contour. To
better model the inherent correlation of the feature vector stream,
and to select a more appropriate cluster from which to predict
the pitch, an HMM-based extension to the GMM scheme is
made. This is illustrated in figure 1a where the joint MFCC and
pitch feature space, as occupied by the clusters of the GMM, is
shown. Figure 1b shows the same feature space but modeled by a
series of HMMs, λw, each comprising a number of states from
which pitch is predicted.
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Figure 1: a) GMM clustering, b) HMM-based states

The first stage of training involves the creation of a set of HMM-
based speech models, Λ. At present this work uses the ETSI
Aurora database which means that the set of models comprises
11 digit models. These models are trained using the MFCC
component, x, of the augmented vector, y, using the standard
Baum-Welch algorithm and a diagonal covariance matrix. Once
a set of models has been created the training data is aligned to
the speech models using Viterbi decoding and vectors belonging
to each state, s, of each model, w, are pooled together. Vectors
corresponding to unvoiced speech (as indicated by the pitch
component) are removed to ensure that the joint distribution of
MFCC and pitch is not distorted by unvoiced vectors. Clustering
is applied to the pooled vectors within each voiced state
(according to section 3.3) using the EM algorithm. This results

in a set of means, y
wsk ,,µ , and covariances, y

wsk ,,Σ ,

corresponding to the kth cluster of the sth state of speech model
w.

Prediction of the pitch, for voiced frames, is accomplished
from the MFCC vectors by first determining the model and state
sequence from the set of models using Viterbi decoding. For
each MFCC vector, xi, the allocated model, mi, and state, qi, are
used to determine the MAP prediction of the pitch,
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where hk,qi,mi(xi) is computed using equation (8) with P(xi|ck)
specific to state qi of model mi.

3.3 Voiced/unvoiced classification

Classification of the MFCC stream into voiced or unvoiced
speech is achieved through analysis of the resulting model and
state sequences after Viterbi decoding. To determine the voicing
associated with each state, the proportion of training data frames
aligned to each state, s, of each model, w, which are voiced was
calculated, os,w. For illustration, figure 2 shows the proportion of
frames, allocated to the 16 states of the digits “six” and “three”
which are voiced.

Figure 2: Voiced state occupancy for digits  a) six,   b) three

The first and last few states of the model “six” contain
relatively few voiced frames which corresponds to the unvoiced
phonemes /s/ and /k/ /s/. The central part of the model comprises
nearly all voiced frames and corresponds to the vowel /ih/. The
state occupancy for the model “three” shows similar behavior.
Initial states have relatively few voiced frames, corresponding to
the /th/ phoneme, while the remaining states are dominated by
voiced frames from the phonemes /r/ and /iy/.

To classify an input MFCC vector, xi, as either voiced or
unvoiced Viterbi decoding is used to determine the model, mi,
and state, qi, allocation. Using the state occupancy, os,w,
measured from the training data, the voicing is determined,
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The threshold, α, has been determined experimentally with a
reasonable value being α=0.2. At this value more errors are
likely to come from unvoiced frames being classified as voiced.
As energy tends to be low for these frames any errors make little
perceptible sound. Conversely, if more errors were made when
classifying voiced frames as unvoiced, their higher energy would
cause more noticeable noise-like errors.

4. EXPERIMENTAL RESULTS

The experimental results in this section measure both the
accuracy of pitch prediction and the resultant reconstructed
speech quality.

4.1 Pitch prediction accuracy

This section determines the accuracy of pitch prediction using a
subset of the ETSI Aurora database comprising multiple
speakers with 200 utterances used for training and 90 for testing.
From this data 13-D MFCC vectors have been extracted together
with a pitch estimate at a rate of 100 vectors per second in
accordance with the ETSI Aurora standard [1]. The pitch
estimate has been made using a comb function approach [9] and
has subsequently been manually corrected to form the reference
pitch measurement.

The pitch prediction systems from section 3 are evaluated on
both their classification of MFCC vectors as voiced or unvoiced
and also on the RMS pitch error for voiced frames. Pitch
classification error is measured as,
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where NV|U is the number of unvoiced frames classified as
voiced, NU|V is the number of voiced frames classified as
unvoiced and N>20% is the number of frames in which the pitch
error is greater than 20%. NTotal is the total number of frames
which was 15651 in these tests. For frames correctly classified as
voiced, the RMS pitch error is computed as,
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where if̂  is the predicted pitch frequency from the ith frame and

if  is the reference pitch for the ith frame.

Table 1 shows the RMS pitch error and classification error
for the systems described in section 3. The GMM systems use
either the closest cluster to the input MFCC vector (equation 6),
or the posteriori weighted MAP prediction (equation 7). In both
cases it was found that using K=64 clusters gave best
performance. Results for HMM-based prediction are shown
using from 1 to 5 clusters within each state with posteriori
weighted MAP prediction of the pitch (equation 9).

Classification error RMS error

GMM (closest) 13.9 % 11.7 Hz

GMM (posteriori) 12.4 % 10.8 Hz

HMM 1 cluster 6.9 % 9.7 Hz

HMM 2 clusters 5.8 % 5.4 Hz

HMM 3 clusters 5.7 % 4.1 Hz

HMM 4 clusters 5.7 % 3.5 Hz

HMM 5 clusters 5.7 % 3.1 Hz
Table 1: Classification and RMS errors for pitch prediction

The performance of the two cluster-based systems shows that
attempting to identify the best cluster from which to predict the
pitch is not as effective as taking a posteriori weighted prediction
from all the clusters. This can be attributed to the difficulty in
identifying the “correct” cluster. In fact in a preliminary test
which was artificially supplied with correct cluster information
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the performance was comparable to that using the posteriori
weighted prediction. The HMM-based prediction is shown to
give considerably more accurate frame classification and a lower
RMS pitch error. Increasing the number of clusters in each state
of the HMM enables more detailed modeling of the joint
distribution of MFCC and pitch and this results in a reduction of
frame classification error to 5.7% and in RMS error to 3.1Hz.
The accuracy of the recogniser was 97% which means that 3% of
digits were aligned to incorrect models from which voicing and
pitch were extracted. It should be noted that the significant
majority of frame classification errors arise from incorrect
voiced/unvoiced decisions which occur in low energy regions at
the start and end of speech.

To illustrate the effectiveness of the 5 cluster HMM-based
system, figure 3 compares the predicted pitch contour (solid line)
with the reference pitch (dashed line) for the digit sequence “6-
5-5-6-3-2-0”.
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Figure 3: Comparison of predicted and reference pitch contours

The figure shows that the predicted pitch closely tracks the
reference pitch throughout the spoken digits. Pitch classification
errors can be observed around frame 225 where unvoiced frames
are labeled voiced at the end of the digit three and around frame
280 where voiced frames just before the start of the digit two are
labeled as unvoiced. These correspond to very low energy
signals which indicates that pitch classification may benefit from
an energy term in the feature vector in addition to MFCC(0).

4.2 Speech reconstruction results

The purpose of pitch prediction in this work is to enable an
acoustic speech signal to be reconstructed from a stream of
MFCC vectors with no additional pitch information. To illustrate
the effectiveness of this approach, figure 4a shows the
narrowband spectrogram of the original speech utterance “6-5-5-
6-3-2-0” – as used in figure 3. Figure 4b shows the spectrogram
of the speech signal reconstructed from MFCC vectors and
reference pitch using the sinusoidal model described in section
2. Figure 4c shows the spectrogram of the speech signal
reconstructed solely from MFCC vectors with the pitch predicted
using the 5 cluster HMMs.

Comparing figures 4a and 4b shows the spectral smoothing
which MFCC extraction has introduced as a result of the mel-
filterbank and truncation of DCT coefficients. Only slight
differences are observed between figures 4b and 4c which arise
from pitch prediction errors. It is interesting to note that the
voiced/unvoiced classification errors observed in figure 3 have
very little effect in the reconstructed speech as they are
associated with very low energy regions of the speech.

Figure 4: Comparison of narrowband spectrograms

A series of informal listening tests also revealed that speech
reconstructed from the predicted pitch is virtually
indistinguishable from that reconstructed from the reference
pitch.

5. CONCLUSION

This work has introduced a system which enables an acoustic
speech signal to be reconstructed solely from MFCC vectors. To
accomplish this two methods have been developed which enable
the pitch frequency to be predicted from an MFCC vector. A
formal evaluation of both the RMS pitch error and
voiced/unvoiced decision shows that the system can deliver
reliable measurements. Speech reconstructed from the predicted
pitch, using a sinusoidal model, is almost indistinguishable from
that reconstructed using the reference pitch. This work has been
based around a set of digit models, but further work will
consider the use of phoneme models and unrestricted grammars.
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