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ABSTRACT

Most conventional speaker identification systems rely on short-time
spectral envelope features. Recent efforts have yielded significant
progress by capturing and modeling speaker-specific aspects of long-
term information in the spoken language signal such as prosodic,
syntactic and other conversational features. Although significant re-
sults have been reported, substantial improvements can be made by
using detailed models better describing the specific behavior of each
feature. In this paper we focus on modeling pitch pattern dynam-
ics at different prosodic scale levels. Trends in pitch variation are
believed to appear at different time-scales — such as microprosody,
accent, phrase and discourse levels — making wavelet analysis of the
£0 contour a suitable choice for investigating the corresponding pitch
patterns. We then introduce a transform of the fO contour wavelet
coefficients that both results in a compact representation and better
reveals the spatio-temporal details in the coefficient sequences rep-
resentation. In turn, the dynamics of the transformed sequence are
modeled by a first order Markov chain, at each scale level. Classi-
fication is carried out at each level and the scores of the classifiers
operating at the different supra-segmental levels are fused together.
The proposed method achieves an EER of 4.8% on the NIST 2001
Speaker ID Extended Data task using a 16-conversation subset, based
solely on f0-based information.

1. INTRODUCTION

Traditional speaker recognition systems are limited to the use of
frame-based spectral features that basically model the different vocal
tract shapes of the speaker via GMMs [1]. Hence long-term supra-
segmental features conveying information about prosody and speak-
ing style, which are mostly due to psychological and habitual at-
tributes of the speaker rather than physiological characteristics of the
vocal tract, are ignored. Exploiting this speaker-specific information
in the identification task enriches the feature set by introducing addi-
tional informative dimensions to the feature-space. This can result in
improved system accuracy and allows for better separation between
a large number of speakers due to the reduction of class overlap in
the new higher-dimensional space.

Recent efforts [2,3] have shown impressive results by incorporat-
ing different levels of linguistic information including conversational
[4], lexical [5,6], phonemic [7,8,9] and prosodic [4,10,11] features.
This paper focuses on novel ways of modeling fine details at the
prosodic level and in turn apply it toward speaker identification.

Previous approaches to pitch and energy pattern modeling for
speaker identification fall into the two categories of static and dy-
namic models. The former approach uses either global statistics [12]
or more low level (word, pause, etc) statistics [4], but can not address
the dynamic pattern variations in the feature trajectories. The latter
approach, either uses Dynamic Time Warping to compare trajectories
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of frequent words [10], which is ASR-dependent, or uses an f0 con-
tour stylization, a piece-wise linear approximation, and subsequently
employs either statistics [11] or bigrams [10] for modeling the slope
and duration of the stylized segments. This work was an important
first step towards a comprehensive dynamic model, and has resulted
in an EER of 14.1% with the slope-duration system. However, length
of the stylized segments are in the range of 50-300 ms and although
they are supra-segmental, a first order Markov dependency (bigram)
is not adequate to capture variational patterns occurring over longer
analysis durations, say in the order of seconds. In this paper we in-
troduce a new modeling scheme to overcome this limitation.

Studies on f0O generation models [13], have shown additive trends
in feature behavior present along different linguistic levels, i.e. seg-
mental, accent and phrase levels. Each level has the potential of
conveying distinct speaker-specific information. For instance, it is
believed that the decline in the pitch contour at the phrase level is
related to the respiratory cycle of the speaker [14]. One motiva-
tion for the present work in deriving signal representations at mul-
tiple wavelet scales arises from drawing parallels with observations
regarding linguistic information residing at multiple scales in the
speech signal.

In this work, summarized in Fig. 1, we have utilized a discrete
wavelet transform with a triangular scaling function that leads to a
piecewise linear approximation of f0 along different time-scales. To
efficiently model the dynamic patterns of the coefficients we also
propose a transformation that results in a compact discrete represen-
tation of the coefficient sequences. The core of our classifier is a
bigram in this domain, and therefore we adapt a target model bigram
from the background model for each time-scale level. The overall
classifier fuses the log-likelihood scores of the level-based classifiers
by linear weighting to obtain the overall likelihood.

The SRI Prosody Database and the NIST 2001 Extended Data
task evaluation scheme [15] were used to evaluate our algorithm’s
performance. The EER of the system is 4.8%, a promising result for
just using (ASR-independent) prosodic features'.

2. LEVEL-BASED FEATURE EXTRACTION

The first step in creating the classifier is representing the input se-
quence in an appropriate feature space. Fig. 1 summarizes the four
steps in our feature extraction process, which are described below.

2.1. Data Cleaning

Although Lognormal Tied Mixture (LTM) filtered [16] fO is avail-
able in the SRI database, we follow a simpler thresholding approach

!Note information at the lexical, syntactic and higher levels is obtained
from an automatic speech recognizer in SID systems
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Fig. 1. System Diagram demonstrates the feature extraction process
—cleaning the f0O contour, smoothing, analyzing using wavelet trans-
formation, and compaction of the feature space — and the dynamic
modeling process at multiple levels with classifier score fusion

to fix halving/doubling errors. First the fO median over one utter-
ance serves as the base on which halving/doubling errors are detected
and corrected. After the process is iterated 5 times, the sequence is
median-filtered to generate the estimate of fO0.

2.2. Smoothing

Due to f0 masking in unvoiced (UV) regions we use a localized
cubic polynomial fit to fill in the UV segments.

2.3. Wavelet analysis

Since wavelet transform expands a signal in terms of multiple time-
shift and time-scalings of a mother wavelet it works as a suitable
framework to present the temporal variations of f0 occurring in sev-
eral time-scales. To identify additive trends in pitch variations we
utilize a biorthogonal discrete wavelet transform with a triangular
shape decomposition scaling function to capture the piece-wise lin-
ear variations along 8 different analysis levels. For our speaker ID
task, we found that levels 3 thorough 8 provided reliable information
and ignored the first two levels that tend to be noisy. Fig. 2 illustrates
the cumulative sums of the composed fO at different time-scales.
The various underlying trends in the pitch dynamics manifest them-
selves in terms of the coefficient sequences of each analysis level,
each corresponding to temporal variations in the time-order that mi-
croprosody, segmental, phrasal and discourse events occur.

2.4. Compaction

As can be observed from Fig. 2, the resulting wavelet coefficients
tend to exhibit specific spatio-temporal behavior viz., cyclical pat-
terns (what we term as “puffs”). For example, if a remove-near-zero
global thresholding is performed, 90% of the coefficients can be set
to zero with little effect on pitch. This observation suggests the in-
terpretation of these puffs as prosodic events along different levels of
linguistic importance; although exploring direct association of this
multi-scale signal information, for example, to established prosodic
hierarchy such as through ToBI is a topic of future work. We hy-
pothesize that both the timing and shaping of these events can con-
vey speaker-specific information. The key question that remains to
be answered relates to issue of representation of the sequences in an
efficient manner appropriate for modeling.

To explain the transformation we formulated, consider the simpli-
fied case of an unequally-spaced impulse train shown in Fig. 3. The
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Fig. 2. The scale parameter can be viewed as the scale of a map —
the higher the scale number, the lower the detail level. High scales
are likely to represent utterance level trends and low scales, micro-
prosodic details. As can be seen from this example scales 1 & 2 are
noisy and likely to convey no useful information — compared to the
details in scale 3, for example — and are thus omitted.

following transformation generates an impulse sequence in which the
impulse magnitudes will correspond to time-intervals:

d(t) = % [inv (/ |h(T)|dT)}

where inv stands for inverse of the function.
Although the puffs are not as impulsive, this smooth transform
is also suitable for capturing their shape. A discrete version of the

above is:
n

Y In(m)]

m=—o0

d(n) = hist
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Fig. 3. Compaction procedure illustrated for the simple conceptual
case of a continuous and discrete impulse train.

where hist is the binned histogram. Fig. 4 illustrates this transform
on the level-3 wavelet coefficients of a sample f0 contour.

To determine the number of histogram bins we choose a fixed
quantization step q. So:

oo

1
Number of bins = "— Z h(m)|“
q

m=—0o0

There is a trade-off for choosing q. Smaller quantization steps
lead to less temporal compaction, but more spatial preservation while
larger steps have the opposite effect. Attempting to achieve a bal-
ance, we set g by trial end error to 20, 50, 80, 100, 110, 130 for
levels 3-8 respectively.

3. DYNAMIC MODELING

The output of the compaction procedure is a sequence, with non-
negative integer magnitudes, which are typically in the range of 0-20
at the third level and shrink to a narrower range for the higher levels.
A bigram can model the probability mass density and the first-order
Markov dependence of the compacted sequences. The “dictionary”
size is at most 20 and thus, there is ample data to train the bigram for
the universal background models (UBMs) which represent a pool of
several speakers. Taking 0-20 as our words, 16 training conversation-
halves provide a corpus comprising around twenty thousand words
per speaker. The background speaker corpus will therefore be in
the range of millions of words, which can help robustly estimate the
model parameters. For target models, we train a bigram using back-
off and discounting and then adapt the Universal Background Model
(UBM) to it with an interpolation weight of A = 0.2.

This procedure generates target speaker models and UBM bigram
for each level and allows capturing dynamic prosodic variation pat-
terns along the 6 different feature scales.

4. SCORE COMPUTATION

Since we have six Bayes classifiers per target speaker, we compute
the log-likelihood scores of the test speaker’s pitch-based parame-
ters, with respect to each of the 6 target and background models.
Because the length of the feature sequence for each level is different,
each log-likelihood is normalized to the length of the respective level
sequence.

Additionally, in cases when the test utterance is not long enough
to have a meaningful discrete wavelet transform, especially on high
time-scale levels, we ignore those levels: log,(length(f0) — 10)

I-91

ABS ( LVL 3 COEFS)

KERTEMA S

100 120

Cummulative sum of abs( IvI3 coefs )

2 B 1 120

HIST( CUMSUM ( ABS (LWL 3 COEFS)))

Fig. 4. An example of compaction: (top) level 3 wavelet coefficients,
(middle) the cumulative sum, and (bottom) the resulting compaction,
discrete both in time and magnitude.

works as a threshold for deciding this, where 10 is the length of the
high-pass filter in the wavelet transform.

Once the per-classifier scores are computed and normalized to the
background model score, we fuse them by using a linear weighting
approach. For this work, the fusion weights were experimentally
derived to be w = [0.35, 0.25, 0.15, 0.1, 0.1, 0.05].

5. RESULTS

We used a subset of the 16-conversational NIST 2001 extended data
task scheme, which uses 16 conversation halves for training and then
tests on a selection of true and impostor targets. The standard NIST
tests recommends the use of a whole conversation-half which is 50
utterances (180 s) in average, for testing. Under these test conditions,
our method, which is solely based on the pitch contour for feature
extraction, resulted in an EER (Equal Error Rate) of 4.8% as seen on
the DET curve shown in Fig. 5.

We also explored the effect of decreasing the test segment duration
by segmenting the test conversation-sides into sets of 20, 10, 5, and
2 utterances and re-evaluating the performance of the system. This
resulted in equal error rates of 8%, 13%, 18%, and 28% respectively
which indicates the expected degradation of the system when the test
segment duration is decreased. Nevertheless, this is still promising
and demonstrates the robustness of the system to reduction of test
segment duration to the order of 10 seconds.

Although EER [17] is a popular performance measure for classi-
fiers, and holds a close relation with recognition rate measure, we
would like to point the difference between them. EER deals with
pdf’s of likelihood scores of true and impostor speakers and gets nor-
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Fig. 5. DET curve and EER of the overall system that uses fused
classification information: features from each of the six analysis lev-
els are modeled by a first order Markov chain. The data are from
sixteen conversation-halves from the 2001 NIST test set.

malized by the number of classes, and hence stands for the efficiency
of the classifier structure.

6. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we demonstrated a framework representing the dynamic
variations of pitch, a key component among prosodic features, and
utilized it in a speaker identification task. Results show, that this
framework can capture the speaker-specific trends in pitch patterns
along different temporal scales. Since pitch is generally considered
uncorrelated from spectral envelope features, it will enrich traditional
speaker recognition systems by adding new dimensions to the classi-
fication space. The results may be combined with spectral envelope
features, and others, to further improve the speaker identification per-
formance.

In future work we plan to evaluate the system on the entire set
of NIST 2001 evaluation plan for 1-16-conversational tasks to deter-
mine the effect of both different training and testing conditions on
system performance. Furthermore we are interested in incorporat-
ing additional features known to carry speaker information such as
energy and unvoiced region duration and in optimizing the overall
system parameters.

Use of supra-segmental information demands further exploration
both in terms of uncovering novel features, and finding more elab-
orate modeling schemes appropriate for each stream. In addition to
speaker identification, such prosody modeling may be employed in
other applications such as automatic prosody labeling or user-state
assessment, some of which we are currently investigating.
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