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ABSTRACT

This paper presents an approach that uses articulatory features (AFs)
derived from spectral features for telephone-based speaker verifi-
cation. To minimize the acoustic mismatch caused by different
handsets, handset-specific normalization is applied to the spectral
features before the AFs are extracted. Experimental results based
on 150 speakers using 10 different handsets show that AFs con-
tain useful speaker-specific information for speaker verification
and the use of handset-specific normalization significantly lowers
the error rates under the handset mismatched conditions. Results
also demonstrate that fusing the scores obtained from an AF-based
system with those obtained from a spectral feature-based (MFCC)
system helps lower the error rates of the individual systems.

1. INTRODUCTION

Most traditional speaker recognition systems are based on the mod-
eling of short-term spectral information [1]. The advantage of us-
ing short-term spectral information is that promising results are
obtainable from a limited amount of training data. In recent years,
researchers have started to investigate the high-level speaker infor-
mation, such as the usage or duration of particular words, prosodic
features, etc., that is obtainable from speech [2]. These high-level
features are generally neglected by the traditional spectral feature-
based systems. However, recent research has shown that when
high-level features are combined with low-level features (spectral
features), significant improvement in speaker recognition accuracy
can be obtained [2].

Speech is produced by the continuous movements of articula-
tors in the vocal tract excited by the air stream originated from the
lung. These speaker-characterized articulations and excitations,
which imparted to the produced speech, are the origin of unique
speaker information [3]. However, articulatory information has
not been widely applied to automatic speaker recognition because
the extraction of these features is not trivial.

In this paper, we explore the use of articulatory features (AFs)
to capture the movements of articulators in the vocal tract and their
excitation during sound production for speaker verification. AFs
are the abstract representations of some important speech produc-
tion properties, such as the manner and place of articulation, the
vocal cord excitation, and lip motion, etc. AFs have been adopted
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Articulatory
properties Classes # Class

Voicing Voiced, Unvoiced 2
Front-back Front, Back ,Nil 3
Rounding Rounded, Not Rounded, Nil 3
Manner Vowel, Stop, Fricative, Nasal 5

Approximant-Lateral
Place High, Middle, Low, Labial, Dental 9

Coronal, Palatal, Velar, Glottal

Table 1. Five articulatory properties and the number of classes in
each properties.

as an alternative or supplementary features for speech recogni-
tion [4, 5], language ID [6] and confidence measure [7]. Prelimi-
nary work of applying AF on speaker ID have been performed by
K. Kirchhoff [8] in the 2002 JHU Summer Workshop on Human
Language Technology. It was found that AFs are complementary
to spectral features and that better performance can be obtained
when they are used together.

2. ARTICULATORY FEATURE EXTRACTION

To extract AFs from speech, a set of articulatory classifiers are
trained to learn the mapping between the acoustic signals and the
articulatory states. Either images, such as X-ray that records the
actual articulatory positions, or mappings between phonemes and
their corresponding articulatory properties can be used to train the
classifiers. In this work, AFs were extracted from acoustic sig-
nals based on an approach similar to [5]. Specifically, to obtain
the AFs, a sequence of acoustic vectors are fed to five classifiers
in parallel, where each classifier represents a different articulatory
property. The outputs of these classifiers (the posterior probabili-
ties) are concatenated to form the AF vectors. The extracted AFs
can be treated as an intermediate representation of the acoustic sig-
nals.

In our verification system, five different articulatory proper-
ties, as tabulated in the first column of Table 1, are used. For each
property, a Multi-Layer Perceptron (MLP) is used to estimate the
probability distributions of its predefined output classes (they are
listed in the second column of Table 1). The extraction process is
illustrated in the right dotted box of Fig. 1.

The inputs to these five AF-MLPs are identical while their
numbers of outputs are equal to the numbers of AF classes listed
in the last column of Table 1. To ensure a more accurate esti-
mation of the AF values, multiple frames of Mel-frequency cep-
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Fig. 1. Combination of handset identification and AF extraction for robust speaker verification. Arrows with thick lines are inputs/outputs
with multiple dimensions. Each AF-MLP takes 9 consecutive, 12-dimensional normalized MFCCs as input. The number of outputs for the
Voicing, Rounding, Front-back, Manner and Place MLPs are 2, 3, 3, 5 and 9 respectively.

stral coefficients (MFCCs), which are ( ) + - . / 0 0 0 / ) / 0 0 0 / ) 4 - . 7
of MFCCs created by a moving window, are served as the inputs
to the AF-MLPs at frame ) . Rather than feeding the MFCCs di-
rectly to the AF-MLPs, they are normalized to zero mean and unit
variance. The normalization parameters, a mean vector � and a
standard deviation vector � each with dimension the same as that
of the MFCCs, are obtained globally. Given an MFCC vector 8 9 ,
the normalization for dimension : is done by applying

; - < > @9 A : C E
; 9 A : C + � A : C

� A : C 0 (1)

The normalization aims to remove the variations of input features
among different dimensions so that the determination of MLP weights
is not dominated by those input features with large magnitude.

The AF-MLPs can be trained from speech data with time-
aligned phonetic labels. The alignments can be obtained from
transcriptions or from the Viterbi decoding using phoneme models.
With the phoneme labels, articulatory classes can then be derived
from a mapping between phonemes and their states of articula-
tions [5].

3. ROBUST SPEAKER VERIFICATION

The procedure of AF-based speaker verification is illustrated in
Fig. 1. It can be divided into three steps: handset identification,
AF extraction and speaker verification.

3.1. Handset Identification

Previous work on telephony speech has shown that using differ-
ent types of handsets can cause various degrees of distortion to the
speech signals [11]. Therefore, the AFs extracted from the dis-
torted features will become less reliable and cannot match well
with the speaker and background models that were trained using
data recorded from a different handset.

To reduce the mismatch between training and testing condi-
tions, the handset of each testing utterance is identified and handset-
specific compensation is applied to the distorted MFCCs. We have
adopted our recently proposed handset selector [9, 10] to identify

the most likely handset given a testing utterance. The handset se-
lector is shown in the left dotted box of Fig. 1. Before verification,G

handset specific Gaussian Mixture Models (GMMs), H 
 � J
�
� � �

,
were obtained offline, where each


 � was trained using the dis-
torted speech collected from the telephone handset K . During ver-
ification, the most likely handset

� �
of every testing utterance is

identified by feeding the distorted MFCCs, L = H 8 � / 8 . / 0 0 0 / 8 N J
to H 
 � J

�
� � �

.

3.2. MFCC Normalization and AF Extraction

The AF values determined from the AF-MLPs are closely related
to the quality of MFCCs as they are the source of the AF extrac-
tion. The AFs cannot be correctly estimated if the AF-MLPs take
the distorted MFCCs as their inputs. To compensate for the distor-
tion caused by different handsets, normalization parameters ( � � ,

� � ) for each handset
�

are determined. During verification, the
normalization parameters corresponding to the identified handset
are used to normalize the distorted MFCCs according to (1). The
normalized MFCCs are then fed to the five AF-MLPs to determine
the AFs. So, the variation of MFCCs due to handsets difference
can be minimized and they are transformed to a range which is
closer to the training patterns.

3.3. Speaker Verification

According to Table 1, there are a total of 22 articulatory classes,
which result in a 22-dimensional AF vector for each frame. For
each testing utterance from a claimant, a sequence of 22-dimensional
AF vectors P were fed to a speaker model ( Q S ) and a background
model ( Q U ) to obtain a verification score V A P C

V A P C E Y [ ] ^ A P ` Q S C + Y [ ] ^ A P ` Q U C 0 (2)

V A P C was compared with a threshold to make a decision. The
threshold was varied to obtain a speaker-independent equal error
rate (EER), i.e., the point at which the false rejection rate is equal
to the false acceptance rate.
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Speaker Set Impostor Set
(50 female and 50 male) (25 female and 25 male)

fadg0,faem0, � � � ,fdxw0,mabw0, feac0,fear0, � � � ,fjem0
majc0, � � � ,mfgk0,mjls0,mjma0, mfxv0,mgaw0, � � � ,mjlg1

mjmd0,mjmm0,mpdf0

Table 2. Speaker identities in the speaker set and the impostor set.
The speakers in these sets were arranged alphabetically.

4. EXPERIMENTS AND RESULTS

4.1. Corpus

In this work, the HTIMIT corpus [12] was used for performance
evaluation. HTIMIT was constructed by playing a gender-balanced
subset of the TIMIT corpus through 9 telephone handsets and a
Sennheizer head-mounted microphone. This set-up introduces real
handset-transducer distortion in a controlled manner but without
losing the time-aligned phonetic transcriptions of the TIMIT cor-
pus. This feature makes HTIMIT ideal for studying the handset
variability in speech and speaker recognition systems [13]. It also
facilitates the training of AF-MLPs by mapping the time-aligned
phoneme labels to their corresponding articulatory classes.

4.2. Speaker Enrollment

Two disjointed gender-balanced speaker set and imposter set, which
consists of 100 and 50 speakers respectively, were selected from
the HTIMIT corpus. The speaker identities are listed in Table 2.

For the system that uses spectral features only (referred to as
MFCC system hereafter), 12-th order MFCCs were computed ev-
ery 14ms using a Hamming window of 28ms. For the system
that uses AFs as features (referred to as AF system hereafter), 22-
dimensional AF vectors were obtained from the five AF-MLPs,
each with 108 input nodes (9 frames of 12-dimensional MFCCs)
and 50 hidden nodes. The MLPs were trained using the Quick-
net [14]. Training data includes all sentences collected using the
head-mounted microphone (senh) of all speakers in HTIMIT, ex-
cluding speakers from the speaker and imposter sets.

For each system, a 64-center universal background model � �
was trained using the SA and SX sentences from all speakers in the
speaker set. For each speaker � in the speaker set, a speaker model

� 	 was adapted from � � using MAP adaptation [1]. The SA
and SX sentences collected using the head-mounted microphone
(senh) were used for enrollment and adaptation. � � 	 , � � � were
tested on the SI sentences of speaker � and the 50 impostors.

4.3. Robustness Enhancement

For the MFCC system, either cepstral mean subtraction (CMS)
or stochastic feature transformation (SFT) [9] was adopted to en-
hance the robustness of handset mismatch during verification. When
applying SFT during verification, the handset selector, � 
 � �

�
� � �

,
was first applied to the testing utterance to identify the handset.
The SFT parameters of the identified handset were then used to
transform the distorted MFCC vectors. The SFT parameters for
each handset appeared in the handset selector were estimated from
the SX and SA sentences of 10 speakers (first ten speakers in the
speaker set) using the corresponding handset.

The handset selector in the AF system is also based on MFCCs,
and � 
 � �

�
� � �

are identical to those of the MFCC system. Both the
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Fig. 2. DET plots of different features and channel compensa-
tion approaches based on the testing utterances from handset el3.
For ease of comparison, methods in the legend are arranged in de-
scending order of EER.

verification performance of AFs extracted from MFCCs and from
MFCCs with CMS were evaluated. As MFCCs need to be nor-
malized before feeding to the AF-MLPs, we also evaluate the AF
system when CMS and HS-Norm are used together. If CMS is
applied before HS-Norm, accuracy of the handset selector may be
lowered as the channel characteristics in the MFCCs will be re-
moved. Due to this, HS-Norm is applied before CMS. For each
type of handsets, the normalization parameters ( � , � ) were esti-
mated from the same data used to estimate the SFT parameters.

4.4. System Fusion

Although both the AF and MFCC systems take MFCCs as input,
they attempt to capture two different information from the speech
signals. The MFCC system attempts to capture the acoustic char-
acteristics while the AF system attempts to capture the articulatory
properties. Therefore, fusion of these two systems should obtain
performance better than the individual systems.

In this work, utterance scores, as given in (2), obtained from
the MFCC system and the AF system were linearly combined to
produce the fusion scores

� � � � � � � �  � # � $ & � ( ) + # � $ � � � � � � � $ - + # � � � � # � $  (3)

where + # � is a handset-specific fusion weight. It was determined
from data used for estimating the normalization parameters and the
SFT parameters of each handset type.

4.5. Results

Table 3 summaries the EERs obtained from the approaches dis-
cussed above. The verification results of MFCC system, AF sys-
tem and the fusion of the two systems are listed in Rows 1-3, Rows
4-7 and Rows 8-9, respectively. The EERs are the average of all
SI sentences from 100 speakers and 50 impostors. The DET plots
corresponding to handset el3 are shown in Fig. 2.

Evidently, for the MFCC system, MFCC SFT outperforms
MFCC Baseline and MFCC CMS. For the AF system, verifications
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Equal Error Rate (%)
Row Features cb1 cb2 cb3 cb4 el1 el2 el3 el4 pt1 Average senh

1 MFCC Baseline 16.35 23.68 30.20 28.86 14.48 27.64 16.84 23.90 32.61 23.84 2.93
2 MFCC CMS 8.31 7.48 28.65 21.04 8.29 9.76 11.65 8.86 11.13 12.80 5.47
3 MFCC SFT 5.30 4.33 19.90 14.84 4.68 6.63 7.55 4.10 7.45 8.31 2.95

4 AF Baseline 23.36 30.80 38.90 34.25 24.40 34.32 26.20 27.30 38.87 30.93 6.60
5 AF HS-Norm. 10.11 9.97 26.28 20.48 11.69 13.95 13.22 8.01 17.42 14.57 6.56
6 AF CMS 15.84 14.67 35.18 30.01 15.16 17.82 19.16 15.18 23.51 20.73 11.22
7 AF CMS + HS-Norm. 14.50 14.45 28.65 23.65 14.97 17.66 18.98 13.51 19.17 18.39 11.22

8 3 + 5 4.87 3.91 19.24 13.92 4.68 6.30 6.59 3.67 7.49 7.85 2.85
9 2 + 7 7.64 7.54 25.55 18.57 8.20 9.21 11.33 8.19 9.64 11.76 5.35

Table 3. Equal error rates based on different approaches and different handsets. 3+5 is the fusion of MFCC SFT and AF HS-Norm while
2+7 is the fusion of MFCC CMS and AF CMS + HS-Norm. CMS, SFT and HS-Norm stands for cepstral mean subtraction, stochastic feature
transformation [9], and handset normalization, respectively. Fusions based on other combinations have also been performed; however, we
only list the two which give the best results. The handset recognition accuracy is 98.35%. Note that the MFCC baseline, MFCC CMS, AF
Baseline and AF CMS do not require the handset selector.

based on the AFs extracted from the MFCCs and from the MFCCs
with CMS are respectively named as AF Baseline and AF CMS in
Table 3. Applying handset normalization (HS-Norm in Table 3)
significantly reduces the average EER from 30.93% to 14.57% for
AF Baseline and 20.73% to 18.39% for AF CMS. This represents
an error reduction of 52.89% and 11.29% for AF Baseline and AF
CMS respectively. Note that the results of SFT or HS-Norm give
the upper bound performance of their handset compensation abil-
ity. As the HTIMIT corpus adopts a parallel recording approach
and there is a single recording session for each handset type, the
transformations obtained from SFT or HS-Norm can match well
with the handset distortion. It is of interest to investigate the sit-
uation in which the variations in the telephone line distortion are
also considered.

The aim of applying HS-Norm is to shift the channel distorted
MFCCs back to a range comparable to the normalized MFCCs
used for MLP training, so that the five AF-MLPs can work well on
both channel matched and channel mismatched MFCCs. This ob-
jective was largely achieved because the EERs of different hand-
sets under AF HS-Norm were made closer to the EER obtained
from AF Baseline using the enrollment handset (senh). As CMS
removes most of the channel characteristics, AF CMS+HS-Norm
achieves a more significant EER reduction on several handsets
only, e.g., cb3, cb4, el4 and pt1. As a result, the average error
reduction becomes less significant.

The individual MFCC and AF systems that give the lowest
EER were fused together. When no CMS was used, fusing MFCC
SFT and AF HS-Norm reduces the average EER from 8.31% to
7.85%, which represents a 5.54% error reduction. When CMS
was used, the fusion of MFCC CMS and AF CMS+HS-Norm low-
ers the average EER from 12.80% to 11.76%, which represents
a 8.13% error reduction. This suggests that the acoustic charac-
teristics represented by the MFCCs and the articulatory properties
represented by the AFs are partially complementary, although they
are from the same source.

5. CONCLUSIONS

This paper has presented a speaker verification approach using the
articulatory features (AFs) derived from MFCCs. Results based on
150 speakers from HTIMIT have shown that AFs contain speaker-
specific information which is useful for speaker verification. In or-
der to increase the robustness of AFs to channel mismatch, handset-
specific normalization was applied during AF extraction. Results

show that the normalization significantly reduces the equal error
rate under the handset mismatch conditions. In addition, when the
proposed AF system is fused with a traditional MFCC system, an
equal error rate lower than that of the individual systems is ob-
tained.
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