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ABSTRACT

We presented a new text-independent speaker recognition method
by combining speaker-specific Gaussian Mixture Model(GMM)
with syllable-basedHMM adapted by MLLR or MAP (EuroSpeech
2003[16]). The robustness of this speaker recognition method for
speaking style’s change was evaluated in this paper. The speaker
identification experiment using NTT database which consists of
sentences data uttered at three speed modes (normal, fast and slow)
by 35 Japanesespeakers(22 males and 13 females) on five sessions
over ten months was conducted. Each speaker uttered only 5 train-
ing utterances (about 20 seconds in total). We obtained the accu-
racy of 98.8% for text-independent speaker identification for three
speaking style modes (normal, fast, slow) by using a short test ut-
terance (about 4 seconds). This result was superior to conventional
methods for the same database. We show that the attractive result
was brought from the compensational effect between speaker spe-
cific GMM and speaker adapted syllable based HMM.

1. INTRODUCTION

Speaker recognition has been a research topic for many years and
various types of speaker models have been studied. Hidden Markov
models (HMM) have become the most popular statistical tool for
this task. The best results have been obtained using continuous
density HMM (CHMM) for modeling the speaker characteristics
[1]. For the text-independent task, where the temporal sequence
modeling capability of the HMM is not required, one state CHMM,
also called a Gaussian mixture model (GMM), has been widely
used as a speaker model [2]. In accordance with [3], our previous
study [4] showed that GMM can perform even better than CHMM
with multi-states.

The objective of the speaker identification is to find a speaker
model λi given the set of reference models Λ = {λ1, · · · , λN}
and sequenceof test vectors (or frames) X = {x1, · · · , xT } which
gives the maximum a posteriori probability P (λ|X). This requires
the calculation of all P (λj |X), j = 1, · · · , N , and finding the
maximum among them.

In most of the tasks, it is possible to use the likelihood P (X |λ)
instead of P (λ|X) which does not to require prior probabilities
P (λ) to be known. Another simplifying assumption is that the
sequenceof vectors, X , are independent and identically distributed
random variables. This allows to express P (X |λ) as

P (X |λ) =
T�

t=1

p(xt|λ), (1)

where P (xt|λ) is the likelihood of single frame xt given model λ.
This is a fundamental equation of statistical theory and is widely

used speech recognition. Generally speaking, P (X |λ) is an ut-
terance level score of X given model λ obtained from frame level
scores P (xi|λ) using Eq. (1). Obviously, another ways of defining
such scores can exist [5]. In GMM modeling techniques, feature
vectors are assumed statistically independent, which is not true,
but allows to simplify mathematical formulations. To overcome
this assumption, recently, models based on segments of feature
frames were proposed [6]. One of the disadvantages of GMM
is that the acoustic variability dependent on phonetic events is
not taken into account. Therefore, (large vocabulary continuous)
speech recognition techniques have been used for text-dependent
speaker identification [7]. The most attractive approach is to use a
speaker adapted HMM from speaker-independent HMM [8]. This
approach is also used for text-independent speaker identification.
Sturim et al. used text-constrained GMM for text-independent
speaker verification after segmenting input speech into pre-defined
acoustic units by using speaker-independent speech recognizer [9].
Park et al. proposed a combination method of GMM and speaker-
dependent segment-based speech recognizer [10]. The speaker-
dependent speech recognizer is used for the segmentation results
by a speaker-independent speech recognizer. Recently, Hazen et.
al tried an integration method of GMM and speaker-dependent
HMM [12]. In this paper, we propose a new combination method
of speaker-specificGMM and speaker-adaptedsyllable-based HMM
[16] and show the robustness.

2. SPEAKER MODELING

2.1. Gaussian Mixture Model (GMM)

A GMM is a weighted sum of M component densities and is given
by the form

P (X |λ) =

M�

i=1

cibi(x), (2)

where x is a d-dimensional random vector, bi(x), i = 1, · · · , M ,
is the component density and ci, i = 1, · · · , M , is the mixture
weight. Each component density is a d-variate Gaussian function
of the form

bi(x) =
1

(2π)d/2|Σi|1/2
exp {−1

2
(x − µi)

T Σ−1
i (x − µi)},

(3)
with mean vector µi and covariance matrix Σi. The mixture weights
satisfy the constraint that

M�

i=1

ci = 1. (4)

The complete Gaussian mixture model is parameterized by
the mean vectors, covariance matrices and mixture weights from
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all component densities. These parameters are collectively repre-
sented by the notation

λ = {ci, µi, Σi}, i = 1, . . . , M. (5)

In our speaker recognition system, each speaker is represented
by such a GMM and is referred to by his/her model λ.

For a sequence of T test vectors X = x1, x2, · · · , xT , the
standard approach is to calculate the GMM likelihood as in Eq.
(1) which can be written in the log domain as

L(X |λ) = log p(X|λ) =

T�

t=1

log p(xt|λ). (6)

The GMM parameters are estimated by the E-M algorithm (the
HTK toolkit [11]).

2.2. Speaker Adapted HMM

A parameter set of HMM is given by λ = {A, B, π}, where A,
B and π denote a set of state transition probability, a set of output
probability density functions, and a set of initial state probabilities,
respectively. We used an acoustic model of a context-independent
syllable-based HMM, which has a left-to-right topology and con-
sists of 7states with 5 self-loops. Each output probability density
function is represented by a 16 mixture Gaussian model with diag-
onal covariance matrices. The number of syllables is 124. Speaker
adaptation is performed for B. The HMM parameters are esti-
mated/adapted by the HTK toolkit. We describe in brief adaptation
methods for a Gaussian distribution.
(i) MAP [11]

The speaker adaptation by Maximum A Posterior Probability
Estimation (MAP) is in the following :

µ̂N =
(α + N − 1)µ̂N−1 + XN

α + N
=

αµ0 +
�N

i=1 Xi

α + N
, (7)

where {X1, X2, · · · , Xm} denotes training sample vectors and
N(µ̂N , Σ̂N) denotes an estimated Gaussian Model adapted by train-
ing samples.
(ii) MLLR [11]

The speaker adaptation by Maximum Likelihood Linear Re-
gression (MLLR) is defined as follows :

µ̂ = Aµ0 + b, (8)

where A and b denote a regression matrix and an additive bias vec-
tor, respectively. These are estimated by using training samples.

3. SPEAKER IDENTIFICATION PROCEDURE

Figure 1 shows the structure of our speaker identification system.
In this system, input speech is analyzed and transformed into a fea-
ture vector sequence by Front-end Analysis block and then each
test vector xt is fed to all reference speaker models of GMM and
speaker adapted syllable-based HMMs in parallel. The i-th speaker
dependent GMM produces likelihood Li

GMM (x), I = 1, 2, · · · , N .
The i-th speaker adapted syllable-based HMMs also produce like-
lihood Li

HMM (x) by using a continuous syllable recognizer. All
these likelihood values are passed in the so called likelihood de-
cision block, where they are transformed to form the new score
Li(x).

Fig. 1. Text-independent speaker identification by integration of
GMM and speaker-adapted syllable-based HMMs

Li(X) = (1 − α)Li
GMM(X) + αLi

HMM(X), (9)

where α denotes a weighting coefficient.

4. EXPERIMENTS

4.1. Database and Speech Analysis

For the experiments we used the NTT database.
The NTT database consists of recordings of 35 speakers (22

males and 13 females) collected in 5 sessions over 10 months
(1990.8, 1990.9, 1990.12, 1991.3 and 1991.6) in a sound proof
room [3]. For training the models, 5 same sentences for all speak-
ers, from one session (1990.8) were used. Five other sentences
uttered at normal, fast and slow speeds and same for each of the
speakers, from the other four sessions were used as test data. Av-
erage duration of the sentences is about 4 sec. The input speech
was sampled at 16KHz. 12 MFCC, their derivative (∆cep), and
delta log-power were calculated at every 10ms with a window of
25 ms. Each session’s mel-cepstrum vectors were mean normal-
ized by mean subtraction and silence were removed.

4.2. Experimental Results

Figure 2 illustrates averaged text-independent speaker identifica-
tion results on three different speaking styles (normal, fast, slow)
by speaker-specific GMMs and speaker-adapted syllable-based
HMMs for every utterance.

In the case of GMMs, we used 4 mixtures and 8 mixtures
having full covariance matrices and 32 mixtures and 64 mixtures
having diagonal covariance matrices, respectively. The parame-
ters for three speaker-specific GMMs were estimated from only
speaker-specific training data. We also conducted the estimation
by using the MLLR based speaker adaptation method from the
speaker-independent GMM (speaker-adapted GMM) [13]. The
both were almost the same performance. When we integrate GMM
with speaker-adapted HMM, however, we got better performance
by speaker-specific GMMs than by speaker-adapted GMM. In the
case of syllable-based HMMs, we obtained the likelihood from
free syllable recognition without using any language models. The
syllable recognition rate was about 80%. The rate was insensi-
tive to speaker identification, because the identification rate was
almost the same as the case of a text-dependent mode (i.e., syl-
lable recognition rate = 100%). For GMMs, the GMM with 8-
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Fig. 2. Speaker identification (averaged) rates of text-independent
speaker identification using normal, fast and slow speed test data
for every utterance

mixtures was the best and it was comparable with the syllable-
based HMM adapted by MLLR. For HMMs, the adapted HMMs
by MLLR were better that those by MAP.

Figure 3 illustrates averaged text-independent speaker identifi-
cation results by the combination of GMM with 8/64 mixtures and
speaker adapted syllable-based HMMs by MLLR/MAP. We ob-
tained the identification rate of 98.7% (99.4% for normal speed,
98.9% for fast speed and 97.9% for slow speed) in the combi-
nation case of GMM(8 mixtures) and HMM adapted by MLLR
and 98.4% in the case of MAP, respectively. The combination
improved the identification rate remarkably. On the other hand,
Figure 4 illustrates the averaged results by combining two types
of GMMs or HMMs adapted by MLLR and MAP for every ut-
terance. The identification rates were about 98.1%(GMM) and
98.0%(HMM), which were worse than the rate in Fig.3 . It was
caused by the fact that two types of GMMs or the speaker-adapted
syllable-based HMMs by MLLR and MAP were similar to one an-
other. On the other hand, the speaker-specific GMM and speaker-
adapted syllable based HMM compensate their characteristics to
one another.

Next, we investigated the identification performance for short
test utterances. We took only two second segments from beginning
parts in the above test utterances and identified the speaker. Fig-
ure 5 illustrates averaged text-independent speaker identification
results by speaker-specific GMMs and speaker-adapted syllable-
based HMMs. As expected, the performance became worse, that
was 89.8% for GMM with 8 mixtures of full covariance matri-
ces and 90.4% for HMM adapted by MLLR, respectively. As
shown in Figure 6, however, we obtained the identification rate of
94.0%(96.0% for normal speed, 94.9% for fast speed and 91.0%
for slow speed) in the combination case of GMM and MLLR-
HMM and 93.2% in the case by GMM with 64 mixtures of di-
agonal covariance matrices.

Finally, we integrated two types GMMs(8 mixtures of full
covariance matrices and 64 mixtures of diagonal matrices) with
MLLR-HMM. The results for 2 seconds utterances are shown in
Figure 7. Furthermore, the integration improved the identification
(averaged) rate from 94.0% to 94.6%, especially, from 96.0% to
96.9% for normal speed. The integration of 3 methods improved
the rate from 98.7% to 98.8% for every utterance.

5. DISCUSSIONS

The combination of speaker-specific GMM and speaker adapted
syllable-based HMM improved the identification rate. So we in-
vestigated their compensational effect. Table 1 summarizes the 2
× 2 confusion matrix by the combination of GMM (8 mixtures)

Fig. 3. Speaker identification (averaged) rates by integrating
with text-independent speaker identification methods using nor-
mal, fast and slow speed test data for every utterance (GMM and
MAP/MLLR-HMM )

Fig. 4. Speaker-identification (averaged) rates by integrating with
text-independent speaker identification methods for every utter-
ance (GMM-8mix & GMM-64mix and MAP-HMM & MLLR-
HMM)

Fig. 5. Speaker identification (averaged) rates of text-independent
speaker identification for every two seconds.

Fig. 6. Speaker identification (averaged) rates by integrating with
text-independent speaker identification methods for every two sec-
onds (GMM and MLLR-HMM).
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Fig. 7. Speaker identification rates by integrating with 3
methods(GMM-64 mixtures, GMM-8 mixtures, MLLR-HMM)
for every two seconds

Table 1: Confusion matrix in Figure 3

GMM \ Syllable HMM correct incorrect
correct 2014 32

(2014) (28)
incorrect 34 20

(27) (4)

Table 2: An example of improvement (test speaker: Mito)
Speaker’s GMM HMM Combination
Model likelihood likelihood likelihood
Mito -66.62 -25.34 -33.59
Mkaw -66.55 -25.53 -33.73
Mmik -66.79 -25.33 -33.62
result incorrect incorrect correct

and MLLR-HMM in Figure 3.
The total number of samples is 2100 (35 speakers× 4 sessions

× 5 utterances × 3 speeds). The values in parentheses denote the
number of correctly recognized samples after using the combina-
tion method. We can see the compensational effect. To our suprise,
4 samples out of 20 were correctly recognized, even if these sam-
ples were incorrectly recognized by both of GMM and syllable
based HMM. We show a typical example in Table 2.

Our results were superior to the results by other studies for
the same database[3,5,14,15,16]. For example, Miyajima et al.
reported the rate of 99.0% for normal speaking rate utterances [14].
They used GMMs trained by 15 utterances, integrated by cepstrum
coefficients and pitch and estimated by MCE.

6. CONCLUSION

We proposed a text-independent speaker recognition method by
combining speaker specific GMM and speaker-adapted syllable-
based HMM and we obtained the error reduction rate of about 50%
for every utterance and 43% for every two seconds, respectively.
From the speaker identification experiment using NTT database,
we confirmed that our proposed method was superior to conven-
tional text-independent speaker identification methods, showed the
robustness and stated the reason.
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