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ABSTRACT

This paper attempts to investigate the effectiveness of incorpora- 

ting vocal source information for enhancing automatic speaker 

recognition accuracy. We propose a new method to extract 

discriminative features from the linear prediction (LP) residual 

signal, which are closely related to the glottal excitation of 

individual speaker. A complementary parameter set in addition 

to the commonly used linear predictive cepstral coefficients 

(LPCC), called Haar Octave Coefficients of Residue (HOCOR), 

is obtained by applying Haar transform to the LP residue. This 

additional feature vector retains the spectro-temporal characteri- 

stics of the source excitation sequences that are related to the 

fundamental frequency, harmonics as well as their phases. 

Experimental evaluation over the YOHO corpus demonstrates 

the high speaker discriminative power and high inter-speaker 

variability of HOCOR. Speaker recognition tests with both vocal 

tract feature (LPCC) and vocal source information (HOCOR) 

outperform the conventional methods of using LPCC only. 

1. INTRODUCTION 

Automatic Speaker Recognition (ASR) is a biometric identifica-

tion process, in which personal identity is recognized on the 

basis of speaker information obtained from speech. According to 

the speech production model, human speech is the output of the 

vocal tract system driven by the source excitation 

)()()( nhnuns ,      (1) 

where u(n) denotes the excitation source and h(n) represents the 

impulse response of the vocal tract system [1]. State-of-the-art 

ASR systems typically extract features carrying vocal tract 

chara-cteristics, such as Mel Frequency Cepstral Coefficients 

(MFCC) and Linear Predictive Cepstral Coefficients (LPCC). 

Recently, some experimental results have shown that features 

bearing vocal cord characteristics, such as pitch, harmonics, etc.,

can work as supplementary features to those vocal tract ones and 

can improve speaker recognition performance [2][3]. 

In addition to exploiting prosodic and harmonic features, 

researchers have also examined the usefulness of the LP residue 

for speaker recognition [4][5]. As shown in Figure 1, if the vocal 
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tract transfer function of the speech production model can be 

characterized by the predictive coefficients, i.e. kk aâ , the 

prediction error, referred as the LP residue, will approximate the 

excitation signal, )()( nune . Thus the LP residue can be used 

to derive the source information [1]. However, the spectral 

envelop of e(n) is nearly flat, features extracted from the Fourier 

spectrum do not make much contribution [4]. In [5], auto-

associative neural network was applied to obtain source 

information from the residue. This method is not widely used 

because of its expensive computational cost. 

Plumpe et al. applied temporal modeling of the glottal flow 

derivative waveform to speaker identification [6]. The drawback 

of this method is the difficulty in locating the closed glottis 

interval which is crucial for estimating the glottal flow 

derivative.

In this article, we present a new technique to extract source 

information from the LP residue. Rather than taking Fourier 

transform, Haar transform [7] is applied to the residual signal, 

which is computationally simpler. More importantly, Haar 

transform is effective in detecting the bursts within the residue 

for voiced sounds [8]. The Haar spectrum essentially represents 

a time-frequency analysis of the residual signal. While it does 

not provide the true glottal flow, information related to the pitch 

and its harmonics, as well as the spectro-temporal features of the 

excitation source could be characterized. In order to reduce the 

feature dimension, the energy of each individual Haar octave (or 

the time-indexed sub-groups of each octave) is computed to 

form the so called Haar Octave Coefficients of Residue 

(HOCOR), and this is used as a feature complementary to the 

LPCC.

The remainder of this paper describes the proposed techni-

que and experimental results that demonstrate the effectiveness 

of HOCOR for speaker recognition. In Section 2 we introduce 

the Haar transform and illustrate how we generate the HOCOR 

feature set. The experimental set up and recognition results are 

presented in Section 3. Finally we draw a conclusion of this 

work in Section 4. 
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Figure 2. The first 4 octave groups of Haar Function

2. FEATURE EXTRACTION 

2.1. Haar Function and Haar Transform 

Discrete Haar transform of signal x (n) and its inverse transform 

can be formulated as 
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The Haar function H (k, n) is a completely orthogonal function 

set of rectangular waveforms 
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where i denotes an octave subset having a zero-crossing in a 

given width N/2 i-1, and j gives the position of the function within 

this subset. Spectral decomposition with such a rectangular base 

function is more appropriate than that with sinusoidal function 

due to the noise like, burst mode changing characteristics of the 

residue [7]. Figure 2 shows the first 4 groups of Haar Function. 

If we define the frequency to be the number of zero-crossing 

within a time interval, then the Haar transform provides a kind 

of time-frequency analysis of the signal. We can define the Haar 

spectrum as 

110 NkkXkG ,,,,)()( .       (4) 

All G(k)’s within an octave group can be considered as the result 

of scanning the signal with a specific Haar function. Thus the 

Haar spectrum retains the spectro-temporal characteristics of the 

residue. Figure 3 shows the Haar spectrum (b) of a segment of 

the residue (a). The peaks of G(k)’s within an octave are position 

sensitive to the bursts within the signal. The reconstructed signal 

(c) from G(k) keeps the burst properties of the original one, in 

both periodicity (frequency) and position (phase). 

2.2. Generating HOCOR 

To generate the Haar Octave Coefficients of Residue, HOCOR, 

we first group the G(k)’s within different octaves, i.e.
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Each octave essentially corresponds to a specific frequency 

decomposition of the signal. For example, for a length-256 

signal segment with 8 kHz sampling frequency, the Hi

correspond to the Fourier frequency components as follows, 
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Figure 3. Haar spectrum of a length-256 LP residue. The 6 

periodic peaks of residue (a) were represented by the peaks 

within different octave (b), i.e. 6 periodic peaks within the 

last octave. The reconstructed signal (c) well matches the 

original one in both the frequency and phase of the bursts. 

0 50 100 150 200 250
-0.5

0

0.5

1

0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

0 50 100 150 200 250
-1

-0.5

0

0.5

1

(a) Original  LP residue 

 (b) Haar spectrum  G(k) of residue

(c) Reconstructed residue from G(k) 

I - 78

➡ ➡



Thus H1 will give frequency component at 32 Hz, while H8

shows the presence of frequency as high as 4 kHz. For speech 

processing, the fundamental frequency is seldom less than 64 Hz, 

and therefore the first three octaves can be ignored. 

To compose a HOCOR feature vector, the simplest set we 

can derive is given by 

NikG 2

HG(k)
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log,,)(HOCOR .      (7) 

In this case, the feature vector has just 6 elements containing 

only information of the fundamental frequency and the harmo-

nics, but not the temporal information since all G(k)’s within an 

octave are added together. To retain the temporal information, 

each octave can be equally divided into 2 sub-groups and then 

the energy of each sub-group is computed to generate a double 

sized HOCOR. For convenience, we call it the first-ordered 

HOCOR, noted as HOCOR1. There are now 12 elements in the 

HOCOR1 feature vector and contains approximate temporal 

information of the constituent frequency components. To extend 

further so as to obtain more detailed temporal information, each 

octave can be divided into 4, 8 and up to 2 i-1 sub-groups, noted 

as 

)(,,,,)( 11210 ijjii ,             (8) 

where 
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And the th-ordered HOCOR is given by 
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2.3 Properties of HOCOR 

In summary, HOCOR bears the following properties. 

HOCOR is uncorrelated to the LPCC in a large extent, 

since the residue is theoretically orthogonal to the vocal 

tract system. 

The rectangular base function and the time-frequency 

properties of Haar transform result in better spectral 

decomposition of the noise like, burst mode changing 

residual signal. 

HOCOR  with > 0 represents pitch and harmonics as 

well as their phase information of the vocal source, which 

will be useful for speaker recognition. 

Computational simplicity. 

3. EXPERIMENTS 

3.1 System Design 

Experiments were conducted using the male subset of the 

YOHO corpus [9]. Both the identification and verification 

experiments were carried out. The speaker models were trained 

by 128 components GMM [10] with the first three enrollment 

sessions. The fourth enrollment session was used for background 

selection in verification tasks. Testing trials used all the 10 

sessions with an utterance of about 2.5 seconds for each trial. 

For comparison, a baseline system with LPCC_D feature, which 

contains LPCC and its first order time difference, LPCC, was 

implemented. The feature extraction procedure was shown in 

Figure 4. The speech samples were first pre-emphasized, and 

then weighted with Hamming window function. The silent 

segments were excluded by endpoint detection. After LP 

analysis, the LP residue was passed through the HOCOR 

generator to generate the HOCOR  as described in section 2.2. 

And 12 dimensional LPCC can be obtained from the linear 

prediction process. Finally, the first order time difference 

elements, LPCC and HOCOR, were produced to include 

dynamic characteristics. 

3.2 Experimental Results 

For identification test, we measured the identification error rate 

(IDER). For verification, we measured the equal error rate (EER) 

and detection cost (CDet). Each of them represents a point on the 

detection error tradeoff (DET) plot. While the EER corresponds 

to the point where the false rejection and false acceptance error 

are the same, the CDet measures the system performance with 

different weights for these two types of error [11], 

etNonTFAFAetTFRFR PPCPPC argargDetC .    (11) 

Here we set FAFR CC 10 , which corresponds a point in the 

lower-right region that user convenience is required.

The contribution of temporal information for speaker 

recognition was demonstrated in Figure 5. As shown, the 

recognition performance was improved when more temporal 

information was incorporated, i.e. the IDER curve declined as 

increased from 0 to 2, and then went up as  greater than 3. The 

EER and CDet curves had the similar trend to the IDER. The 

degeneration of performance with larger  may be due to the 

correlation between sub-groups and the very large feature vector 

size in which the training data may be insufficient. In the 

following experiments, the 12 dimensional HOCOR1 feature was 

used.
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Performance
LPCC_D

(24 dim.) 

HOCOR1

(12 dim.) 

HOCOR1_D

(24 dim.) 

IDER (%) 

EER (%) 

CDet 1000

1.51

1.04

5.05

26.63

11.14

67.84

17.64

8.74

52.78

Table 1. Recognition results for vocal tract and source features. 

 Performance 
Feature 

Combination 

Score 

Combination 

IDER (%) 

EER (%) 

CDet 1000

1.16

0.99

4.69

1.06

0.89

4.03

Table 2. Recognition results for fusing complementary features. 

As evident from Table 1, HOCOR1 resulted in 26.63%, 

11.14% and 67.84 for IDER, EER, and CDet, respectively. Also, 

the first order delta elements provided additional discriminative 

power which improved the performance by 34%, 22% and 22%, 

respectively. But the discriminative power of HOCOR1 and 

HOCOR1_D are not convincing compared to that of LPCC_D. 

However, we expected to gain some improvement by using 

HOCOR1_D as complementary feature to LPCC_D. Since theor-

etically the residual signal and the vocal tract system should be 

uncorrelated, combination of source and vocal tract information 

should reduce recognition error. 

To determine how and how much the fusing information can 

improve the performance, two fusing methods were used. One is 

called Feature Fusion, where the HOCOR1_D was appended to 

the LPCC_D to form the 48 dimensional LPCC_D_HOCOR1_D.

The second is called Score Fusion, where the final score was the 

summation of scores calculated from LPCC_D and HOCOR1_D,

2

hl SS
S ,       (12) 

where the subscripts l and h correspond to LPCC_D and 

HOCOR1_D, respectively. Table 2 lists the recognition results of 

the information fusion system. Obviously, when taking into 

account of both vocal tract and source excitation characteristics, 

the system performed better when compared with the baseline 

system where only vocal tract information was used. And using 

Feature Fusion, the relative reductions of IDER, EER and CDet

 CDet is multiplied by 1000 for convenient display 

were about 23.2%, 4.8% and 7.1%, respectively. While with 

Score Fusion, the improvement was more significant. We 

obtained a relative error or cost reduction of 29.8%, 14.4% and 

20.2%. The inferiority of Feature Fusion to Score Fusion may 

be partly due to the insufficient training data for the large sized 

feature vector.

4. CONCLUSION 

This paper presents a new technique to extract discriminative 

features from the source excitation. Instead of extracting 

information from the Fourier spectrum of the LP residue, our 

method applied Haar transform to the residual signal. The Haar 

spectrum provides a time-frequency analysis of the residue 

which retains the spectro-temporal characteristics of the 

excitation sequences. The feature set HOCOR  with  > 0 offers 

speaker-specific information that is related to the fundamental 

frequency, harmonics as well as their phases. The recognition 

tests showed the discriminative power of HOCOR  for speaker 

recognition. Especially, when served in supplement to the vocal 

tract feature (LPCC_D), HOCOR1_D relatively improved the 

recognition performance of 29.8%, 14.4% and 20.2% for IDER, 

EER, and CDet, respectively. 
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