
HIGH-LEVEL SPEAKER VERIFICATION WITH SUPPORT VECTOR MACHINES∗

W. M. Campbell, J. P. Campbell, D. A. Reynolds, D. A. Jones, and T. R. Leek

MIT Lincoln Laboratory
Lexington, MA 02420

E-mail: wcampbell@ll.mit.edu

ABSTRACT

Recently, high-level features such as word idiolect, pronunciation,
phone usage, prosody, etc., have been successfully used in speaker
verification. The benefit of these features was demonstrated in
the NIST extended data task for speaker verification; with enough
conversational data, a recognition system can become “familiar”
with a speaker and achieve excellent accuracy. Typically, high-
level-feature recognition systems produce a sequence of symbols
from the acoustic signal and then perform recognition using the
frequency and co-occurrence of symbols. We propose the use of
support vector machines for performing the speaker verification
task from these symbol frequencies. Support vector machines have
been applied to text classification problems with much success. A
potential difficulty in applying these methods is that standard text
classification methods tend to “smooth” frequencies which could
potentially degrade speaker verification. We derive a new kernel
based upon standard log likelihood ratio scoring to address lim-
itations of text classification methods. We show that our meth-
ods achieve significant gains over standard methods for processing
high-level features.

1. INTRODUCTION

We consider the problem of text-independent speaker verification.
That is, given a claim of identity and a voice sample (whose text
content is a priori unknown), determine if the claim is correct or
incorrect. Traditional approaches to speaker verification use spec-
tral content (e.g., cepstral coefficients) of the speech and Gaussian
mixture models to perform recognition [1].

An exciting area of recent development pioneered by Dod-
dington [2] is the use of “high-level” features for speaker verifi-
cation. In Doddington’s idiolect work, word N -grams from con-
versations were used to characterize a particular speaker. More
recent systems have used a variety of approaches involving phone
sequences, pronunciation modeling and prosody. For this paper,
we concentrate on the use of phone and word sequences. The pro-
cessing for this type of system uses acoustic information to ob-
tain sequences of phones or words for a given conversation and
then discards the acoustic waveform. Thus, processing is done at
the level of terms (symbols) consisting of, for example, phones or
phone N -grams.

∗This work was sponsored by the United States Government Techni-
cal Support Working Group under Air Force Contract F19628-00-C-0002.
Opinions, interpretations, conclusions, and recommendations are those of
the authors and are not necessarily endorsed by the United States Govern-
ment.

This paper is organized as follows. In Section 2, we discuss
the NIST extended data speaker verification task. In Section 3, we
discuss methods for obtaining phone and word sequences. Sec-
tion 4 shows the structure of the SVM speaker verification system.
Section 5 discusses how we construct a new likelihood ratio based
kernel for speaker verification using term weighting techniques for
document classification. Finally, Section 6 shows the significant
improvements of the new methods over traditional N -gram meth-
ods for phone and word sequences.

2. THE NIST EXTENDED DATA TASK

Speaker verification experiments were performed based upon the
NIST 2003 extended data task. The corpus was a combination of
phases 2 and 3 of the Switchboard-2 corpora. Each training utter-
ance in the NIST extended data corpus consisted of a conversation
side that was nominally of length 5 minutes (approximately 2.5
minutes of speech) recorded over a land-line telephone.

For training and testing, a jackknife approach was used to in-
crease the number of tests. The data was divided into 10 splits with
disjoint speakers. When processing a split, the remaining splits
were used to construct a “background” model. For example, when
conducting tests on split 1, splits 2-10 could be used to construct a
background.

Speaker models were trained using 1, 2, 4, 8, or 16 conversa-
tion sides to examine the situation where the system could become
more “familiar” with the individual. A large number of speakers
and tests were available; for instance, for 8 conversation training,
739 distinct target speakers were used and 11, 171 true trials and
17, 736 false trials were performed. For additional information on
the training/testing structure we refer to the NIST extended data
task description, see http://www.nist.gov/speech/tests/spk/2003/.

3. HIGH-LEVEL FEATURE EXTRACTION

In this work, we used both word and phone sequences as the base
features to characterize a speaker.

Word Sequence Extraction. Transcripts for conversations
were provided by NIST. ASR transcripts were generated at NIST
using a real-time version of BBN’s Byblos system. Potentially,
lower speaker verification error rates could be obtained with better
transcripts.

Phone Sequence Extraction. Phone sequence extraction
for the speaker verification process was performed using the
phone recognition system from the PPRLM language identifica-
tion system [3]. PPRLM uses a MFCC front end with delta
coefficients. Each phone is modeled in a gender-dependent

I - 730-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡

context-independent (monophone) manner using a three-state hid-
den Markov model (HMM). Phone recognition is performed with
a Viterbi search using a fully connected null-grammar network of
monophones.

The phone recognition system encompassed multiple
languages—English (EG), German (GE), Japanese (JA), Man-
darin (MA), and Spanish (SP). In earlier phonetic speaker
recognition work [4], it was found that these multiple sequences
were useful for improving accuracy. The phone recognizers were
trained using the OGI multilanguage corpus which had been hand
labeled by native speakers.

After a “raw” phone sequence was obtained from PPRLM, ad-
ditional processing was performed to increase robustness. First,
speech activity detection marks were used to eliminate phone seg-
ments where no speech or crosstalk was present. Second, silence
labels of duration greater than 0.5 seconds were replaced by “end
start” pairs. Third, extraneous silence was removed at the begin-
ning and end of the resulting segments. Finally, all phones with
short duration were removed (less than 3 frames).

4. SVMS FOR HIGH-LEVEL SPEAKER RECOGNITION

4.1. Support Vector Machines

A support vector machine (SVM) is a two-class classifier con-
structed from sums of a kernel function K(·, ·),

f(x) =

N�
i=1

αitiK(x,xi) + b; (1)

where the ti are targets, and � N
i=1 αiti = 0. The vectors xi are

support vectors and obtained from the training set by an optimiza-
tion process [5]. The target values are either 1 or −1 depend-
ing upon whether the corresponding support vector is in class 1 or
class 2. For classification, a class decision is based upon whether
the value, f(x), is above or below a threshold.

The kernel K(·, ·) is constrained to have certain properties (the
Mercer condition), so that K(·, ·) can be expressed as

K(x,y) = b(x)tb(y) (2)

where b(x) is a mapping from the input space (where x lives) to
a possibly infinite dimensional space.

4.2. Phone SVM System

Our system for speaker verification using phone sequences is
shown in Figure 1. The scenario for its usage is as follows. An
individual makes a claim of identity. The system then retrieves the
SVM models of the claimed identity for each of the languages in
the system. A test utterance is then collected. A phone sequence
is derived using each of the language phone recognizers and then
post-processing is performed on the sequence as discussed in Sec-
tion 3. The phone sequence is then vectorized by computing
frequencies of N -grams—this process will be discussed in Sec-
tion 5. We call this term calculation since we compute term
types (unigram, bigram, etc.), term probabilities and weightings
in this step [6]. This vector is then processed by a SVM using the
speaker’s model in the appropriate language, and a score per lan-
guage is produced. These scores are then linearly fused to produce
a final score. The final score is compared to a threshold and a re-
ject or accept decision is made based upon whether the score was
below or above the threshold, respectively.

speech

EG phone
recognizer

O

O

O

Phone Post-
Processing

Term
Calculation

EG Speaker
Model SVM

Σ

GE phone
recognizer

Phone Post-
Processing

Term
Calculation

GE Speaker
Model SVM

SP phone
recognizer

Phone Post-
Processing

Term
Calculation

SP Speaker
Model SVM

score

Fig. 1. Phonetic speaker verification using SVMs.

4.3. Word SVM System

The word-based SVM speaker recognition system is the same
structure as one “branch” of the phone system shown in Figure 1.
The input acoustic test utterance is converted to an English word
sequence. The word sequence is then converted to a vector of prob-
abilities (term calculation). This vector is then put into an SVM of
the form (1) along with support vectors (from training) represent-
ing the speaker model. The resulting output score is compared to
a threshold and an accept or reject decision is made.

4.4. Training

Training for the system in Figure 1 is based upon the structure of
the NIST extended data corpus. We treat each conversation side in
the corpus as a “document.” From each of these conversation sides
we derive a single (sparse) vector of weighted probabilities. To
train a model for a given speaker, we use a one-versus-all strategy.
The speaker’s conversation sides are trained to a SVM target value
of +1. The conversations sides not in the current split are used as
a background and trained to an SVM target value of −1. Note that
this strategy ensures that speakers that are used as impostors are
“unseen” in the training data.

5. KERNEL CONSTRUCTION

Our first step of kernel construction is the selection of probabilities
to describe the symbol sequence. We follow the work of [2, 4] and
use a “bag of N -grams” approach. For a symbol sequence, we
produce N -grams by the standard transformation of the stream;
e.g., for bigrams, the sequence of symbols from a conversation
side, t1, t2, ..., tn, is transformed to the sequence of bigrams of
symbols t1 t2, t2 t3, ..., tn−1 tn. We then find probabilities of N -
grams with N fixed. That is, suppose we are considering unigrams
and bigrams of symbols, and the unique unigrams and bigrams
of the corpus are designated d1, ..., dM and d1 d1, ... dM dM ,
respectively; then we calculate probabilities

p(di) =
#(tk = di)

� l #(tk = dl)

p(di dj) =
#(tk tk+1 = di dj)

� l,m #(tk tk+1 = dl dm)

(3)

where #(tk = di) indicates the number of symbols in the con-
versation side equal to di, and an analogous definition is used for
bigrams. These probabilities then become entries in a vector v
describing the conversation side

v = � p(d1) . . . p(dM) p(d1 d1) . . . p(dM dM) � t
.
(4)

I - 74

➡ ➡

In general, the vector v will be sparse since the conversation side
will not contain all potential unigrams, bigrams, etc.

A second step of kernel construction is the selection of the
term weighting for the entries of the vector v in (4) and the nor-
malization of the resulting vector. By term weighting, we mean
that for each entry, vi, of the vector v, we multiply by a factor wi

for that entry determined from the background. In the information
retrieval literature, this is referred to as the “collection” compo-
nent of the weighting [6]. We tried two distinct approaches for
term weighting.

TFIDF weighting. The first is based upon the standard
term-frequency inverse-document-frequency (TFIDF) weighting
approach [6]. From the background section of the corpus, we com-
pute the frequency of a particular N -gram using conversation sides
as the item analogous to a document. I.e., if we let DF (ti) be the
number of conversation sides where a particular N -gram, ti, is
observed, then our resulting term-weighted vector has entries

vi log � # of conversation sides in background

DF (ti) � . (5)

We follow the weighting in (5) by a normalization of the vector to
unit length x �→ x/‖x‖2.

Log likelihood ratio weighting. An alternate method of term
weighting may be derived using the following strategy. Suppose
that we have two conversation sides from speakers, spk1 and spk2.
Further suppose that the sequence of N -grams (for fixed N) in
each conversation side is t1,t2, ..., tn and u1, u2, ..., um respec-
tively. We denote the unique set of N -grams in the corpus as d1, ...,
dM . We can build a “model” based upon the conversation sides for
each speaker consisting of the probability of N -grams, p(di|spkj).
We then compute the likelihood ratio of the first conversation side
as is standard in verification problems [1]; a linearization of the
likelihood ratio computation will serve as the kernel. Proceeding,

p(t1, t2, . . . , tn|spk2)

p(t1, . . . , tn|background)
=

n�
i=1

p(ti|spk2)

p(ti|background)
(6)

where we have made the assumption that the probabilities are in-
dependent. We then consider the log of the likelihood ratio nor-
malized by the number of observations,

score =
1

n

n�

i=1

log � p(ti|spk2)

p(ti|background) �
=

M�

j=1

#(ti = dj)

n
log � p(dj|spk2)

p(dj |background) �
=

M�

j=1

p(dj|spk1) log � p(dj |spk2)

p(dj |background) � .

(7)

If we now “linearize” the log function in (7) by using log(x) ≈
x − 1 (Taylor series expansion around x = 1), we get

score ≈
M�

j=1

p(dj |spk1)
p(dj |spk2)

p(dj |background)
−

M�

j=1

p(dj|spk1)

=
M�

j=1

p(dj |spk1)
p(dj |spk2)

p(dj |background)
− 1

=
M�

j=1

p(dj |spk1)�
p(dj|background)

p(dj |spk2)�
p(dj|background)

− 1

(8)

Thus, (8) suggests we use a term weighting given by
1/

�
p(dj |background). This strategy for constructing a kernel

is part of a general process of finding kernels based upon training
on one instance and testing upon another instance [7].

6. EXPERIMENTS

Experiments were performed using the NIST extended data task
protocol using the “v1” lists (which encompass the entire Switch-
board 2 phases 2 and 3 corpora). Tests were performed for 1, 2,
4, 8, and 16 training conversations. Scoring was performed us-
ing the SVM system shown in Figure 1 and the word system de-
scribed in Section 4.3. Both word and phone sequences were vec-
torized as unigram and bigram probabilities (4). Both the standard
TFIDF term weighting (5) and the log likelihood ratio (TFLLR)
term weighting (derived in (8)) methods were used. We note that
when a term did not appear in the background, it was ignored in
training and scoring. A linear kernel was used x ·y+1 to compare
the vectors of weighted terms. Training was performed using the
SVMTorch [5] with a margin and error tradeoff of c = 1.

Results were compared via equal error rates (EERs) and
DET curves. Table 1 shows results for two different weightings,
TFIDF (5) and TFLLR (8), using English phones only and 8 train-
ing conversations. The table shows that the new TFLLR weighting
method is more effective. This may be due to the fact the IDF is
too “smooth”; e.g., for unigrams, the IDF is approximately 1 since
a unigram almost always appears in a given 5 minute conversa-
tion. Also, alternate methods of calculating the TF component of
TFIDF may yield gains; we will explore this in future work.

We next considered the effect on performance of the language
of the phone stream for the 8 conversation training case. Figure 2
shows a DET plot with results corresponding to the 5 language
phone streams. The best performing system in the figure is an
equal fusion of all scores from the SVM outputs for each language
and has an EER of 3.5%; other fusion weightings were not ex-
plored in detail. As expected, the best performing language is
English. Note, though, as we indicated in Section 3 that other
languages do provide significant speaker verification information.

EERs were then found for different training conversation
lengths for the fused phone SVM system. Results for 1, 2, 4, 8,
and 16 conversations were 13.6%, 8.6%, 5.3%, 3.5% and 2.5%,
respectively. Note that even for 1 training conversation, the SVM
system provides significant speaker discrimination.

Figure 3 shows DET plots comparing the performance of the
standard N -gram log likelihood ratio method [4] to our new SVM
method using the TFLLR weighting. We show N -gram log like-
lihood results based on both bigrams and trigrams; in addition, a
slightly more complex model involving discounting of probabili-
ties is used. One can see the dramatic reduction in error, especially
apparent for low false alarm probabilities. The EERs of the stan-
dard system are 8.75% (trigrams) and 10.4% (bigrams), whereas
our new SVM system produces an EER of 3.5%; thus, we have
reduced the error rate by 60%.

Table 1. Comparison of different term weighting strategies, En-
glish only scores, 8 conversation training.

Term Weighting Method EER
TFIDF 7.4%
TFLLR 5.2%

I - 75

➡ ➡

 0.1 0.2 0.5 1 2 5 10 20 40

 0.1

 0.2

 0.5

 1

 2

 5

 10

 20

 40

False Alarm probability (in %)

M
is

s
pr

ob
ab

ili
ty

 (
in

 %
)

Fused Scores

EG

GE
MA

SP

JA

Fig. 2. DET plot for the 8 conversation training case for the SVM
approach with varying languages, TFLLR weighting, and phone
unigrams and bigrams. The plot shows in order of increasing
EER—fused scores, EG, MA, GE, JA, SP.

 0.1 0.2 0.5 1 2 5 10 20 40

 0.1
 0.2

 0.5

 1

 2

 5

 10

 20

 40

False Alarm probability (in %)

M
is

s
pr

ob
ab

ili
ty

 (
in

 %
)

SVM

Standard
Trigram Standard

Bigram

Fig. 3. DET plot for 8 conversation training comparing the phone
SVM approach (solid line) to the standard N -gram log likelihood
ratio approach using phone bigrams (dash-dot line) and phone tri-
grams (dashed line).

Figure 4 shows the SVM system applied to the word stream.
In this case, the SVM shows significant improvement only at low
false alarm rates. A significant factor impacting performance in the
word case is the high sparsity of the document vectors. To achieve
high performance, both the log likelihood system and SVM system
used discounting value of 1 in scoring, see [2]. Discounting with
a value of 1 is equivalent to using 0 (not present) or 1 (present) for
the term frequency.

 0.1 0.2 0.5 1 2 5 10 20 40

 0.1

 0.2

 0.5

 1

 2

 5

 10

 20

 40

False Alarm probability (in %)

M
is

s
pr

ob
ab

ili
ty

 (
in

 %
)

Fig. 4. DET plot for 8 conversation training showing a compari-
son of the SVM approach (solid line) to the standard N -gram log
likelihood ratio approach (dashed line) using word bigrams.

7. CONCLUSIONS

An exciting new application of SVMs to speaker verification was
shown. By computing frequencies of phones and words in con-
versations and using this in an SVM, speaker discrimination was
performed. A new kernel was introduced that reduced error rates
up to 60% over standard N -gram log likelihood techniques.

8. REFERENCES

[1] Douglas A. Reynolds, T. F. Quatieri, and R. Dunn, “Speaker
verification using adapted Gaussian mixture models,” Digital
Signal Processing, vol. 10, no. 1-3, pp. 19–41, 2000.

[2] G. Doddington, “Speaker recognition based on idiolectal dif-
ferences between speakers,” in Proceedings of Eurospeech,
2001, pp. 2521–2524.

[3] M. Zissman, “Comparison of four approaches to automatic
language identification of telephone speech,” IEEE Trans.
Speech and Audio Processing, vol. 4, no. 1, pp. 31–44, 1996.

[4] Walter D. Andrews, Mary A. Kohler, Joseph P. Campbell,
John J. Godfrey, and Jaime Hernández-Cordero, “Gender-
dependent phonetic refraction for speaker recognition,” in
Proceedings of the International Conference on Acoustics
Speech and Signal Processing, 2002, pp. I149–I153.

[5] Ronan Collobert and Samy Bengio, “SVMTorch: Support
vector machines for large-scale regression problems,” Journal
of Machine Learning Research, vol. 1, pp. 143–160, 2001.

[6] Thorsten Joachims, Learning to Classify Text Using Support
Vector Machines, Kluwer Academic Publishers, 2002.

[7] W. M. Campbell, “Generalized linear discriminant sequence
kernels for speaker recognition,” in Proceedings of the Inter-
national Conference on Acoustics Speech and Signal Process-
ing, 2002, pp. 161–164.

I - 76

➡ ➠

