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ABSTRACT 

In Oct. 2002, Advanced Front-End (AFE) for Distributed 
Speech Recognition (DSR) was standardized by ETSI. In order 
to use AFE feature on low computational resource devices, we 
propose a novel approach to improve the computational 
efficiency. In our new algorithm, the structure of two-stage mel-
warped Wiener filtering algorithm, which is the main part of 
AFE, is modified. Wiener filter is constructed and applied 
directly in mel-warped filter-bank domain. The measures we 
take make many time-consuming operations in original 
algorithm completely unnecessary, including the re-calculations 
of power spectrum and the time-domain convolution operations. 
Consequently, a large amount of computations are saved. 
Experiments show that the new approach can substantially 
reduce the computation load while preserving the excellent 
performance of the ETSI AFE. 

1. INTRODUCTION 

Owing to some factors, such as additive noises, channel 
mismatch and Lombard effects, speech recognition systems that 
work well in laboratories may suffer from severe performance 
degradation in realistic applications. 

In spite of its long history, Wiener filtering is still an 
effective and widely used technique for robust speech 
recognition. An improved version of Wiener filtering, two-stage 
mel-warped Wiener filtering [1], has been approved as the main 
part of the ETSI AFE for DSR [2]. However, in original two-
stage mel-warped Wiener filtering algorithm, the Wiener filter 
is constructed in linear-frequency domain using power spectrum, 
whereas the applying of the filter on the signal is in the time-
domain using convolution operations. Such a time-frequency 
switch requires the power spectrum to be re-calculated at each 
stage of the algorithm. The operations above will introduce 
quite a number of additional computations. 

For some low computational resource devices, such extra 
computation load may be unacceptable. So we propose a new 
computational efficient algorithm, in which both the 
construction and the applying of Wiener filter are put into the 
mel-warped filter-bank domain. Therefore the time-consuming 
convolution operations and the re-calculation of power spectrum 
can be avoided. Consequently, the computation load is reduced. 

The rest of this paper is organized as follows. In section 2 
we analyze the causes of large computation load of AFE, then 
propose a solution to the problem. The details of our proposal 
are described in section 3. In section 4, the results of 

comparative experiments are listed. Finally, we present the 
conclusions in section 5. 

2. MODIFICATIONS TO ORIGINAL AFE SYSTEM 

The AFE for DSR [2] can be roughly divided into two parts: the 
terminal side front-end and the server side feature processing. 
Only the terminal part is considered in this paper, since the 
contribution of server side part to the overall performance is 
comparatively trivial. 

Three modules are implemented on the terminal side. They 
are noise reduction module, waveform processing module and 
blind equalization module. Two-stage mel-warped Wiener 
filtering algorithm [1] is the main body of the noise reduction 
module and is very time-consuming. Therefore our 
modifications are primarily concentrated on this algorithm. The 
other two modules are kept intact except that the waveform 
processing module is performed before the noise-reduction 
module. 

Some operations in original two-stage mel-warped Wiener 
filtering algorithm will cause large computation load. First, the 
construction of Wiener filter in linear-frequency domain 
requires the power spectrum to be calculated at both stages of 
the algorithm, so it introduces the power spectrum re-
calculations at both second stage and cepstrum calculation part. 
Second, the Wiener filter is applied in time-domain by time-
consuming convolution operations. Both the spectrum re-
calculation and convolution operation contribute to the large 
computation load of the algorithm. 

In order to improve the efficiency, we propose a new 
structure for Wiener filtering algorithm, called two-stage Mel-
warped filter-bank Wiener filtering. The block diagram of the 
proposed algorithm is shown in Figure 1. 
The new algorithm is based on the mel-warped triangular filter-
bank energies. We reduce the computation load from three 
aspects. First, the mel-warped Wiener filter coefficients are 
directly computed using the mel-warped triangular filter-bank 
energies. Since bands of triangular filter-bank are much fewer 
than bins of linear-frequency FFT power spectrum, the number 
of computations is effectively reduced. Second, mel-warped 
Wiener filter coefficients are smoothed and applied back on 
mel-warped filter-bank energies, because frequency-domain 
Wiener filter coefficients can also be viewed as the gains of the 
spectrum. This measure makes the time-domain convolution 
operations of applying the Wiener filter completely unnecessary. 
Third, since the de-noised mel-warpd filter-bank energies, 
instead of the de-noised time-domain signal, are fed into the 
next stage, the re-calculations of power spectrum are also  
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Figure 1: Block diagram of two-stage Mel-warped filter-bank Wiener filter algorithm

avoided. The power spectrum is calculated only once in the 
whole algorithm. 

3. IMPLEMENTATION DETAILS 

The implementation of the three main modules of our modified 
AFE is explained in detail as follows. 

3.1. SNR-dependent Waveform Processing

SNR-dependent waveform processing [3] is a time-domain 
noise reduction method adopted in AFE. Since our new Wiener 
filtering process is not performed in time-domain, we have to 
move SNR-dependent waveform processing module to the front 
of the AFE, but without any modification in the module itself. 
Our experimental results show that only minor performance 
degradation is introduced by the location shift of this module. 

3.2. Two-stage mel-warped filter-bank Wiener 
filtering

Two-stage mel-warped filter-bank Wiener filtering algorithm, 
the main body of noise reduction module, is proposed to 
simplify the original two-stage mel-warped Wiener filtering. 
The principle of the new algorithm has been introduced in 
section 2, and the implementation details are explained below.  

First, the power spectrum of speech signal is calculated, all 
the configurations are just the same as those used in original 
AFE, including framing, windowing and FFT operations. The 
mel-warped triangular filter-bank is applied on the power 
spectrum to get the energy of each band. The mel-warped filter-
bank we choose has 25 triangular filters without coefficients 
normalization. 

Then we obtain the mel-warped Wiener filter coefficients 
from the mel-warped triangular filter-bank energies in Mel 
Wiener filter design part. We use the same computation 
equations as those used in the linear-frequency Wiener filter 
construction process of the original AFE, with the power 
spectrum of FFT bins replaced the output of the mel-warped 
triangular filter-bank bands. 

The time-domain impulse response is computed from mel-
warped Wiener filter coefficients using Mel-IDCT operation, 
which is not a time-consuming operation. The time-domain  
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Figure 2: Smoothing of Mel-warped Wiener filter coefficients 

impulse response is then truncated, just as that in the original 
algorithm.

Then we move to Wiener filter coefficients smoothing, as 
shown in Figure 2. It is well known that Wiener filter 
coefficients can also be viewed as the amplitude-frequency 
response, or equivalently, the gains that can be directly applied 
on the power spectrum or energies. If amplitude-frequency 
response is ready, the Wiener filter can be applied in frequency-
domain using simple multiplication operations.  

The smoothed Wiener filter coefficients melH are 

computed from truncated impulse response WFh by two steps 
(Figure 2). First, amplitude-frequency response of Wiener 
filter H is obtained from truncated impulse 
response WFh according to equation (1). Second, Mel filtering is 

applied on the amplitude-frequency responseH  to get melH  as 
shown in equation (2). However, it is proved that the two steps 
can be merged into only one step. The merged computation is 
expressed by equation (3). The computation of equation (3) is 
very fast. 
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where B  is the basis of the merged transformation, 
expressed as equation (4):
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Then, we obtain de-noised mel-warped filter-bank energies 
by applying Wiener filter in mel-warped filter-bank domain 
using simple multiplication operations. That is the output of the 
first stage of Wiener filtering. 

The de-noised filter-bank energies are directly fed into the 
second stage of Wiener filtering. Then an almost identical 
Wiener filtering process is repeated. It is clear that the re-
calculation of the power spectrum of speech signal and the Mel 
filtering at the second stage of Wiener filtering is completely 
unnecessary, because the input to the second stage is already 
the de-noised filter-bank energies. 

Finally, a logarithm function is applied on the outputs of 
the second stage, and 13 cepstral coefficients are calculated 
from log filter-bank energies by applying a DCT. 

3.3. Blind Equalization

A blind equalization algorithm [4] is applied on the cepstral 
coefficients to mitigate the channel effects in AFE. We use the 
same algorithm as that implemented in AFE.  

4. EXPERIMENTS 

4.1. Databases and Back-End Configurations

We evaluate the performance and computation load of the 
proposed method on Aurora2 database [5], which is a subset of 
TI digits database contaminated by additive noises and channel 
effects. And the same back-end configurations as those adopted 
in the evaluation of ETSI AFE standard [6] are used in our 
experiments.  

4.2. Experimental Results

First, we compare the computation load of our two-stage mel-
warped filter-bank Wiener filtering algorithm (Filter-Bank WF) 
with that of the original two-stage mel-warped Wiener filtering 
(WF). MFCC baseline Front-End distributed by ETSI on Apr. 
2000 [7] is also used as a reference. Four types of operations are 
considered as shown in Figure 3. They are floating addition 
(subtraction), floating multiplication, floating division and non-
linear operation (such as logarithm). It is obvious that the 
computation load of our Filter-Bank Wiener filtering algorithm 
is just a little larger than that of the MFCC base line front-end, 
but much smaller than that of the original algorithm, and about 
two thirds of the original computation load is saved. 

Then the performances of the two algorithms are compared. 
In this paper, both the absolute performance and the 
performance relative to MFCC baseline (WI007 baseline [7]) 
are listed. It is interesting to find that the overall performance of  

�

���

���

���

���

���

�		
�� ��� 	�� ���������

��������������

M
O

P
S

�� �������������� ��  ��������

Figure 3: The computation load of Wiener filtering 

Aurora2 Absolute 
Performance 

Training Mode Set A Set B Set C Overall
Multi 91.26 90.28 86.04 89.82
Clean 84.46 83.08 78.64 82.74
Average 87.86 86.68 82.34 86.28

Aurora2 Relative Performance
Training Mode Set A Set B Set C Overall
Multi 28.27% 29.20% 13.97% 25.24%
Clean 59.79% 61.77% 36.91% 56.79%
Average 44.03% 45.49% 25.44% 41.01%

Table 1: Absolute and Relative Performance of  
original Wiener filtering 

Aurora2 Absolute 
Performance 

Training Mode Set A Set B Set C Overall
Multi 90.80 89.86 87.60 89.78
Clean 84.35 82.30 80.98 82.86
Average 87.58 86.08 84.29 86.32

Aurora2 Relative Performance
Training Mode Set A Set B Set C Overall
Multi 24.51% 26.12% 23.58% 24.94%
Clean 59.53% 60.01% 43.81% 57.08%
Average 42.02% 43.06% 33.70% 41.01%

Table 2: Absolute and Relative Performance of  
proposed Wiener filtering

the two Wiener filtering algorithms is almost the same, as listed 
in Table 1 and Table 2. This result confirms the correctness of 
our modifications on original Wiener filtering algorithm. Each 
of above two Wiener filtering algorithms is combined with both 
waveform processing module and blind equalization module to 
form the abridged AFE systems, without the server side feature 
processing and feature compression-decoding part. The  
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Figure 4: The computation load of three systems 

Aurora2 Absolute 
Performance 

Training Mode Set A Set B Set C Overall
Multi 92.20 91.54 89.21 91.34
Clean 87.18 86.29 83.25 86.04
Average 89.69 88.92 86.23 88.69

Aurora2 Relative Performance
Training Mode Set A Set B Set C Overall
Multi 36.01% 38.41% 33.50% 36.38%
Clean 66.83% 69.01% 50.52% 65.03%
Average 51.42% 53.71% 42.01% 50.71%

Table 3: Absolute and Relative Performance of AFE  
(abridged but unmodified) 

Aurora2 Absolute 
Performance 

Training Mode Set A Set B Set C Overall
Multi 91.28 91.31 89.71 90.98
Clean 86.31 85.98 84.15 85.74
Average 88.79 88.64 86.93 88.36

Aurora2 Relative Performance
Training Mode Set A Set B Set C Overall
Multi 28.41% 36.70% 36.58% 33.70%
Clean 64.58% 68.32% 53.18% 64.30%
Average 46.49% 52.51% 44.88% 49.00%

Table 4: Absolute and Relative Performance of proposed AFE  
(abridged and modified) 

abridgement will introduce about 2% performance degradation, 
compared with the unabridged AFE system, which gets 53% 
performance.  

The computation load comparison of AFE systems is 
shown in Figure 4, which is very similar to Figure 3, except a 
little more addition and multiplication operations. 

As shown in Table 3, the performance of the abridged AFE 
system is 50.71%, while our proposed AFE gets 49.00% (Table 
4). It is clear that there is slight performance degradation (less 
than 2%) due to our modifications. However, compared with the 
substantial computation load saved, such performance 
degradation is acceptable, especially for low computational 
resource devices. 

5. CONCLUSIONS

We have proposed a novel, efficient algorithm to replace the 
two-stage Wiener filtering in AFE standard for DSR. 

In our new algorithm, both the construction and the 
applying of Wiener filter are in mel-warped filter-bank domain, 
so the convolution operations in time-domain and the re-
calculation of power spectrum are not necessary. Therefore, a 
large amount of computations are saved. 

Both the computation load and the performance of the 
modified and original versions of two-stage mel-warped Wiener 
filtering are compared on Aurora2 database. No performance 
degradation is observed, and more than two thirds of 
computation load of original algorithm is saved. 

Together with the SNR-dependent waveform processing 
module and the blind equalization module, the two versions of 
Wiener filtering are compared as a part of abridged AFE 
systems. The experiments show that our proposal can achieve a 
substantial decrease in computation load at the cost of very 
slight performance degradation. 

The method proposed in this paper is especially suitable 
for the low-resource computing environments, such as 
embedded devices. 
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