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ABSTRACT 

In this paper we present work that has been carried out in 

developing the ETSI Extended DSR standards ES 202 211 and 

ES 202 212 [1][2]. These standards extend the previous ETSI 

DSR standards: basic front-end ES 201 108 and advanced 

(noise robust) front-end ES 202 050 respectively. The 

extensions enable enhanced tonal language recognition as well 

as server-side speech reconstruction capability. This paper 

discusses the server-side speech reconstruction whereas a 

companion paper discusses the front-end extension and tonal 

language recognition. Experimental results show that the 

reconstructed speech produced by the standards is highly 

intelligible under clean and noisy background conditions with 

the DRT (Diagnostic Rhyme Test) and TT (Transcription Test) 

scores meeting or exceeding the objective values corresponding 

to the US DoD (Department of Defence) Federal standard 

MELP (Mixed-Excitation Linear Predictive) coder operating at 

2400 bps.

1. INTRODUCTION 

The European Telecommunication Standards Institute (ETSI) 

STQ Aurora group has published two DSR front-end standards 

in the years 2000-2002 [3]. The basic front-end, as well as the 

noise robust advanced front-end define feature extraction and 

compression on a mobile terminal. The compressed features are 

transmitted to a server for recognition back-end processing.  

The front-end standardization process included recognition 

tests performed in several European languages, as well as 

American English. It is well known, however, that for some 

Asian languages such as Mandarin, Cantonese and Thai, 

recognition accuracy can be enhanced by introducing tonal 

information in addition to the spectral information. Moreover, 

the ability to reconstruct speech from the DSR parameters is 

useful in certain applications: i) DSR of “sensitive” information 

(e.g., banking or brokerage transactions) where the DSR 

parameters are stored for future human verification or to satisfy 

legal requirements, ii) human verification of utterances in a 

speech database collected through a deployed DSR system for 

tuning or retraining models, and iii) applications where machine 

and human recognition are mixed.   In order to address these 

requirements, the ETSI Aurora group decided to extend the 

existing DSR standards to include extraction and compression 

of tonal information at the front-end and speech reconstruction 

at the back-end [4]. The development of the extended standards 

was carried out jointly by IBM and Motorola.  

 This paper deals with server-side speech reconstruction 

using the parameters of the extended front-ends and evaluation 

of the intelligibility of the reconstructed speech. A companion 

paper deals with client-side front-end processing and tonal 

language recognition with the new standards. 

2. SERVER-SIDE SPEECH RECONSTRUCTION 

A simplified block diagram of speech reconstruction at the 

server side is shown in Figure 1. From the received channel bit 

stream, the DSR parameters are decoded, processed to mitigate 

the effect of channel errors, and used as input to the speech 

reconstruction algorithm. These parameters are: Mel-Frequency 

Cepstral Coefficients (MFCC) C0 – C12, logarithm of frame 

energy (log-E), pitch period P, and voicing class VC updated 

every 10 ms. 

Figure 1: Simplified block diagram of speech reconstruction 

The pitch period and voicing class parameters are first fed 

into the pitch tracking and smoothing block PTS. Details of the 

inner working of this block are provided in the companion paper 

and will not be discussed here. 

The reconstruction of speech at the server side is based on 

the well-known sinusoidal speech model [5] whereby each frame 

(segment) of speech is regarded as the sum of a set of sinusoidal 

components; or equivalently, each frame of speech is represented 

by a line spectrum in the frequency domain. The reconstruction 

algorithm then essentially transforms the input parameters for 

each frame into a line spectrum, viz., the number of components, 

their frequencies, magnitudes, and phases. The nature of the line 

spectrum depends on the voicing class parameter VC that can 
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take one of four values: non-speech, unvoiced, mixed-voiced,

and fully voiced. For a fully voiced frame, the line spectrum is a 

harmonic spectrum with the number of components given by 

P/2  and the kth harmonic frequency given by k⋅(8000/P), where 

the sampling frequency is assumed to be 8000 Hz. As will be 

described later, the phases of the harmonics are computed in the 

Voiced Phase Synthesis block VPS. For non-speech and 

unvoiced frames, the number of components is given by 

(FFTL/2)-1 and the kth frequency is given by k⋅(8000/FFTL),

where FFTL is the length of the FFT used in the transformation 

of the line spectrum to time-domain (e.g., FFTL is 256 for 8 kHz 

sampling). The phases in this case are computed in the Unvoiced 

Phase Synthesis block UPS using a pseudo-random generator of 

uniformly distributed numbers in the range from 0 to 2π. For 

mixed-voiced frames, the line spectrum resembles that of a 

voiced frame from 0 to 1200 Hz and that of an unvoiced frame 

from 1200 – 4000 Hz. In all cases, the magnitudes of the 

components are computed in the Cepstra-to-Magnitude 

transformation block CTM.

2.1. Cepstra-to-Magnitude Transformation 

The inputs to the CTM block are the MFCC (C0 – C12) and log-E

parameters. In the case of the extended front-end (XFE), these 

parameters are directly used for transformation into magnitudes. 

In the case of the extended advanced front-end (XAFE), the 

MFCC parameters are first de-equalized to undo the equalization 

step performed at the front-end. The de-equalization filter is 

simply the inverse of the equalization filter except that it 

includes an exponential forgetting factor of 0.999 to minimize 

the propagation effect of quantization and / or channel errors. 

Moreover, for 16 kHz input sampling rate in XAFE, the MFCC 

and log-E parameters are converted to those representing the 0 – 

4 kHz range corresponding to an input sampling rate of 8 kHz so 

that the reconstructed speech output is also at 8 kHz. 

The computation of the spectral magnitudes from MFCC and 

log-E parameters is performed using the following steps: 

2.1.1. Recovery of Higher Order Cepstra
At the front-end, only 13 of the 23 MFCC values are computed, 

compressed, and transmitted. The remaining values (C13 – C22)

referred to here as higher order cepstra are simply discarded. If 

these values can be recovered even partially, that would help in 

more accurate estimation of the spectral magnitudes. Therefore, 

for mixed-voiced and fully voiced frames, the higher order 

cepstra are recovered using a lookup table with the pitch period 

P serving as an indexing parameter. The overall pitch period 

range, viz., 19 – 140 samples at 8 kHz, is divided into a number 

of consecutive, non-overlapping sub-ranges (53 sub-ranges for 

XFE and 29 sub-ranges for XAFE) and the higher order cepstra 

for each sub-range is stored in the table. The table was generated 

by analyzing a large speech database and computing the average 

value of the higher order cepstra over all frames with pitch 

period values falling within the appropriate sub-range. 

2.1.2. Solution of Front-End Equation 
This is the first method for transforming cepstra into magnitudes 

by using a constrained solution of the front-end equation. At the 

front-end, each frame of speech is filtered by a high-frequency 

pre-emphasis filter and transformed into the frequency domain 

through an FFT. The FFT magnitudes (or squared magnitudes) 

are then filtered by a bank of 23 Mel-filters. The filter bank 

outputs next go through a natural logarithm operation followed 

by a 23-point discrete cosine transform (DCT) operation. The 

first 13 values of the resulting cepstrum are compressed and 

transmitted as MFCC values. Starting from the MFCC values, 

one can easily obtain the filter bank outputs by applying inverse 

operations, viz., IDCT (Inverse DCT), and exponentiation. 

However, there is no unique solution to obtain the spectral 

magnitudes from the filter bank outputs even under the 

assumption of a sinusoidal model for speech since the number of 

harmonics generally exceeds 23. A unique solution is possible if  

the speech spectrum is constrained to be a linear combination of 

23 frequency-domain basis functions and the spectral 

magnitudes are regarded as samples of the speech spectrum at 

appropriate frequencies. Further details of this method can be 

found in [6]. 

A further refinement of this approach involves the use of 

higher order cepstra. Starting from the higher order cepstra 

provided by the lookup table (Sec. 2.1.1), one can compute the 

spectral magnitudes as above. From the spectral magnitudes, a 

second estimate of the higher order cepstra can be obtained, 

which, in turn, can be used to refine the magnitude estimates. 

Two such iterations are used in estimating the magnitudes. 

2.1.3. Mel-Frequency Domain Interpolation
A second method for transforming cepstra into magnitudes 

involves the interpolation of the logarithm of the filter bank 

outputs in mel-frequency domain. The center frequencies of the 

filter banks uniformly divide the signal bandwidth in mel-

frequency domain and the logarithm of the filter bank outputs 

represent the average spectral magnitudes at these frequencies. 

An estimate of the spectral magnitude at any other frequency is 

then obtained through simple interpolation using the DCT basis 

functions themselves as the interpolating functions. Further 

details of this method can be found in [7]. For voiced frames, the 

recovery of higher order cepstra (Sec. 2.1.1) is helpful in 

improving the magnitude estimates obtained from this method. 

2.1.4. Combined Magnitude Estimate Calculation
The magnitude estimates ME from Section 2.1.2 and MI from 

Section 2.1.3 are combined to form the final magnitude estimate 

M. For unvoiced frames, the ME vector is first scaled so that it 

has the same squared norm as the MI vector and then M is 

computed as M = 0.9ME  + 0.1MI. For voiced frames, the scaling 

depends on the pitch period. For P < 55, all components of ME

are scaled uniformly so that it has the same squared norm as MI.

For P ≥ 55, two scaling factors one each for low and high 

frequency bands are computed and each component of ME is 

scaled by a linear combination of these two scale factors. After 

scaling, M is computed as M = χ ME + (1-χ) MI where the 

mixing parameter χ is obtained from a lookup table using the 

pitch period P as an indexing parameter. In general, MI is given 

more weight for lower pitch periods and ME for higher pitch 

periods. 

2.2. All-Pole Modeling 

Given the harmonic magnitude estimate of a voiced frame, an 

all-pole model is derived in the APM block that is used in the 
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Voiced Phase Synthesis (VPS) and Post Filtering (PF) blocks. 

The magnitude vector M is first normalized so that the largest 

component value is 1. The normalized vector is then linearly 

interpolated using an interpolation factor of 1, 2, 3, or 4 

depending on the size of the vector. An inverse DFT is next 

applied to the interpolated vector to derive a pseudo-

autocorrelation sequence. From this sequence, an all-pole model 

is obtained using the well-known Levinson-Durbin recursion. 

The model order is 10, 14, and 18 respectively for 8, 11, and 16 

kHz input sampling rates. If the interpolation factor used is 1, 

then this model is final. In other cases, an improved model is 

obtained through an iterative process. The spectral envelope of 

the current all-pole model is used in the interpolation of the 

normalized vector to obtain a better-interpolated vector. Inverse 

DFT and Levinson-Durbin recursion are then applied to this new 

interpolated vector to obtain an improved all-pole model. 

Further details of this modeling technique can be found in [8]. 

2.3. Post Filtering 

Post filtering is applied to the harmonic magnitudes of a voiced 

frame to emphasize the formants in the speech signal thereby 

improving speech quality. Let A(z) = 1 + a1z
-1 + a2z

-2 + … +  

aNz-N where ai, i = 1, 2, …, N are the all-pole model parameters,  

N is the model order, and z is the Z-transform variable. Then, the 

weighting filter W(z) is defined as W(z) = [A(0.75z) / A(0.95z)] ⋅
(1-0.5z-1). The weights Wk = ⏐W(z=exp(jωk))⏐ where ωk are the 

harmonic frequencies (in radians) are computed and normalized 

so that the L4 norm is unity. The weights are then limited to a 

range of [0.5,1.5] and applied to the corresponding harmonic 

magnitudes with normalized frequencies above 0.05π. The 

weighted magnitude vector is then scaled so that it has the same 

energy as the unweighted vector. 

2.4. Voiced Phase Synthesis 

The harmonic phases of a voiced frame are computed in the VPS

block. Each harmonic phase ϕk is made up of three components: 

linear phase component ϕk,lin= τ ⋅ k, excitation phase component 

ϕk,exc, and envelope phase component ϕk,env. The linear 

component accounts for the phase evolution due to the harmonic 

frequency. The linear phase tangent τ is taken to be zero if the 

previous frame is unvoiced; otherwise, it is taken to be the sum 

of the corresponding value at the previous frame and the product 

of the frame shift in samples and the average of the fundamental 

frequency ω1 values corresponding to the current and the 

previous frames. The excitation phase component is obtained 

from a lookup table using the harmonic frequency as an indexing 

parameter. This table was generated using a typical excitation 

pulse obtained from inverse-filtered speech. The envelope phase 

component is obtained from the all-pole model parameters as 

ϕk,env = −arg(A(z=exp(jωk))). For each harmonic frequency ωk,

the three components are computed and added together to 

provide the final harmonic phase.  

2.4. Conversion to Time-domain 

Once the line spectrum of a frame, viz., number of components, 

their frequencies, magnitudes, and phases, has been determined 

as above, it is transformed to a time-domain speech signal in the 

Line Spectrum to Time Domain (LSTD) block. First, the 

harmonics close to the fold-over frequency (> 0.93π ) are filtered 

out.  Then the line spectrum is scaled so that the energy of the 

reconstructed speech will correspond to the value contained in 

the log-E parameter. Then the line spectrum is converted to a 

synthetic complex FFT spectrum by convolving it with the FFT 

of a Hann window 2L samples long, where L is the frame shift in 

samples, e.g., L = 80 for 8 kHz input sampling rate. An inverse 

FFT is applied to the synthetic spectrum to generate a windowed 

speech signal 2L samples long. The windowed speech signals 

from successive frames are then overlap-added in the OLA block 

to produce output speech. In XFE, the sampling rate of the 

reconstructed speech matches the input sampling rate, viz., 8, 11, 

or 16 kHz. In XAFE, the sampling rate of the reconstructed 

speech is 8 kHz irrespective of the input sampling rate, viz., 8 or 

16 kHz. 

3. INTELLIGIBILITY EVALUATION 

For many of the intended applications of the extended DSR 

standards, speech intelligibility is considered crucial. The 

minimum requirement and desired objective for the intelligibility 

of the reconstructed speech were set by the intelligibility of the 

reference US DoD Federal standard LPC10e and MELP coders 

respectively both operating at 2400 bps. The intelligibility was 

evaluated using two different tests: Diagnostic Rhyme Test 

(DRT) and Transcription Test (TT).  

The results of the DRT are shown in Table 1. The 

reconstructed speech signals from the extended DSR standards 

are identified by XFE and XAFE. For informational purposes, 

the original speech was also included in the test. It can be seen 

that the DRT scores of the XFE and XAFE reconstructions 

exceed the minimum required values corresponding to the 

LPC10e coder. In fact, the scores meet or exceed the objective 

values corresponding to the MELP coder under clean as well as 

noisy (car noise – 10 dB, street noise – 15 dB, babble noise – 15 

dB) background conditions. 

DRT scores were also obtained for different input sampling 

rates (8, 11, & 16 kHz for XFE and 8 & 16 kHz for XAFE), 

input signal levels (± 10 dB), and channel error conditions (C/I 

10, 7, & 4 dB). The DRT scores for different sampling rates and 

signal levels were found to be quite close to the scores at 

nominal sampling rate (8 kHz) and nominal signal level (-26 

dBov) shown in Table 1 under the column corresponding to 

clean background. Under channel error conditions, the DRT 

scores were barely affected for 10 and 7 dB C/I and dropped by 

about 10% for 4 dB C/I. 

Table 1. DRT scores for reference coders and 

reconstructions 

                  Noise Type:     

Coder: 

Clean Car 

10dB 

Street 

15dB 

Babble 

15dB 

Original speech 95.7 95.5 92.4 93.8 

XFE Reconstruction 93.0 88.8 85.0 87.1 

XAFE Reconstruction 92.8 88.9 87.5 87.9 

LPC10e 86.9 81.3 81.2 81.2 

MELP 91.6 86.8 85.0 85.3 
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In the speech community, the use of DRT for intelligibility 

evaluation is well established. The DRT is a context-free test that 

uses isolated words from a small vocabulary. The listener listens 

to a word only once before choosing from a pair of rhyming 

words that differ only in the initial consonant. However, in a 

real-life situation, one would expect the speech material to 

consist of connected words with context, a larger vocabulary, 

and the listener to have a chance to listen to a word more than 

once. To address this concern, the Transcription Test was 

devised in which longer passages of commonly encountered 

speech material (from Wall Street Journal) were processed by 

different coders and transcribed by professional transcribers. The 

results of the TT test are shown in Table 2. 

Table 2. TT scores for ref. coders and reconstructions 

  Noise:   

Coder: 

Clean Car Str. Bab. Clean 

Ave. 

Error

(%) 

Original 1,1,2 1,0,1 0,2,4 3,9,3 0,4,1 0.549 

XFE  1,6,1 0,3,6 2,9,4 5,9,2 1,4,5 0.995 

XAFE  0,6,2 0,5,4 0,4,3 3,5,2 1,6,5 0.789 

LPC10e 8,18,

6

62,26,

7

67,22,

7

47,12,

3

18,10,

9

5.526

MELP 0,3,1 1,6,3 4,6,2 16,10,

3

1,9,5 1.201 

Words 

in msg.  1166 1153 1155 1149 1204

Total: 

5827

For the TT, five passages were chosen corresponding to the 

five middle columns of the table with total numbers of words 

shown in the last row. Each passage was made up of utterances 

from 16 different (8 male, 8 female) speakers. Two of the 

passages had clean background while to the other three, 

appropriate background noise (car, street, and babble) was added 

at SNR values ranging from 10 – 20 dB. Five professional 

transcribers were selected to transcribe 5 passages each, with 

each of the 5 passages from a distinct row and column. Thus 

each transcriber listens to a passage only once but listens to all 

the passages and all coded conditions. The transcribed material 

was compared with the original text and numbers of missed,

wrongly transcribed, and partially transcribed words were 

counted.  These numbers are shown in the table. The average 

error rate is shown in the last column. It is seen that the error 

rates of the two reconstructions (XFE and XAFE) are smaller 

than that of LPC10e as well as MELP. 

4. CONCLUSIONS 

With a minimal increase in bit rate (800 bps) over the previous 

standards, the two new extended ETSI DSR standards provide 

the capability to reconstruct highly intelligible speech at the 

back-end thereby extending the usefulness of the standards to 

applications where human verification of speech utterances is 

crucial. Speech is reconstructed from the standard mel-cepstral 

features and additional tonal features extracted by the extended 

standards at the front-end, viz., pitch period and voicing class, 

by using a sinusoidal speech model.  The tonal features are also 

useful in enhancing the recognition accuracy of tonal languages, 

e.g., Mandarin, Cantonese, and Thai. 

Intelligibility of reconstructed speech was evaluated using 

the well-known Diagnostic Rhyme Test (DRT) as well as a 

complementary Transcription Test.  Test results show that the 

intelligibility of speech reconstructed by the extended standards 

is at least as good as that of the US DoD Federal Standard 

MELP coder operating at 2400 bps. 
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