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ABSTRACT

Since the discriminative powers of different phones vary, weight-
ing techniques can be applied to bias the log-likelihood ratio of
different phone segments to emphasize the more discriminating
phones. First, we derive a Kullback-Leibler distance-based phone
log-likelihood weighting scheme that incorporate the duration in-
formation. Second, we propose a posterior probability transfor-
mation method such that contributions from different phones are
weighted implicitly according to their discrimination power. Using
the two proposed approaches reduces speaker verification equal er-
ror rate by more than 10% on the YOHO database.

1. INTRODUCTION

Security is a key issue in this information age. Authenticating a
user’s identity is needed before one can access sensitive informa-
tion or location. Speaker verification, which uses voice to authen-
ticate a user’s identity, is convenient that no password is needed
and can be used over remote networks, such as over the telephone.

Speaker verification can be characterized into two types: text-
independent or text-dependent. Gaussian Mixture Model (GMM)
is commonly used in a text-independent system. In text-dependent
systems, because the transcription of the spoken words are known,
subword-based models are typically used. In either approaches, a
log-likelihood ratio (LLR), comparing the test likelihood from the
target distribution to that from the imposter distribution is com-
puted as a score for verification decision. Using different model-
ing units in the speaker verification task, the LLR can be computed
per HMM state, phone or word and then combined.

In subword-based verification system, the LLR distributions
can differ from phone to phone and from speaker to speaker. Tech-
niques such as Zero-normalization, are introduced to stabilize ver-
ification score alleviate the speaker variation such that speaker in-
dependent thresholding [1] can be effective. To handle variation
across different phonetic models, other researchers have shown
that certain sounds, such as high energy nasals and vowels have
more discriminative power in speaker verification task than some
other phones.

Because the general hypotheses test framework commonly used
in speaker verification does not account for these variations in dis-
criminative power, an explicit weighting or normalization scheme
is needed. For example, [2] suggesting that LLR can be weighted
according to phone energy level. In this paper we examine two
ways to weight the verification score to take advantage of the vari-
ation of phone discriminative power. First, we derive a Kullback-
Leibler distance-based phone LLR weighting scheme. We showed
that this turned out to be similar to the proposed weighting in [3]
but can incorporate the duration information directly.

Second, we propose a posterior probability transformation method
such that contributions from different phones are weighted implic-
itly according to their discrimination power. Under this formu-
lation and assuming each speech frame to be independent, each
phone score is weighted by the “distance” between the target-specific
distribution and imposter distribution of the LLR score and the
phone duration. However, differ from other weighting scheme,
this weighted phone score is offset by a phone-dependent bias be-
fore being combined and transformed by a sigmoid function to a
valid posterior probability between 0 and 1. To account for the po-
tential correlation between frames within a phone, an extra phone-
dependent exponentiation factors are introduced. We then show
that the posterior probability transformation with a phone depen-
dent correlation-compensation factor is a special case of gener-
alized linear model. The posterior probability approach is com-
pared with a Kullback-Leibler distance based weighting schemes,
both in terms of formulation and performance and the KL distance
schemes.

The rest of this paper is organized as follows. In the next sec-
tion, the general framework of verification via LLR test is dis-
cussed, a mathematical basis of developing weight schemes are
described. The proposed posterior probability approach on sub-
word model weighting method is described in Section 3. Exper-
imental results are reported in Section 4 and the conclusions are
presented in Section 5.

2. SPEAKER VERIFICATION WITH SUBWORD
WEIGHTING

2.1. General Verification Framework

For a given test utterance � � ���� ��� � � � � ��� , speaker veri-
fication decides whether � is produced by the claimed speaker.

This verification task can be treated as a hypothesis testing
problem deciding whether the utterance is generated by the claimed
speaker model � (null hypothesis) against the alternative that it is
produced by an imposter � (alternative hypothesis). The LLR of
the two hypotheses is given by,

���� �� �� � ��� � ������ ��� � ������ (1)

The decision process is typically based on the following rule:

�

�

��
���

����� ��� ���

�
� � accept
� � reject,

(2)

where� is the length of the test utterance. In this simple approach,
the LLR of the claimed speaker model and the imposter model is
compared with the threshold � . However, both � and the likelihood
may depend on the speaker or on the sequence of words spoken.
Thus, score normalization may be needed.
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2.2. Subword-based Speaker Verification

In subword based text-dependent speaker verification, the input ut-
terance is segmented into � phones, typically by using the Viterbi
algorithm. The observation sequence can then be expressed as
� � ����

� � �
��
����

� � � � � �
��
������

�, where frame ������ to frame

�� are associated with the ��� phone. We simplify the expression
of phone duration, �� � ���� �� by denoting it as �� in the rest of
the paper. We denote the LLR of an �-th observation of phone � as
����. ���� can be computed by

���� � 	��������� 
�� 
��

� ��� ����������
��� ��� ����������
�� (3)

The verification score in Equation 2, denoted as � �
���, can be
expressed as

� �

��� �

�

��

��
���

���
���

���� �
�

��

��
���

����� (4)

where �� � �
��

���
��� ���� is the average log-likelihood ratio of the

��� phone in the test utterance. One can view �� as the contribu-
tion of phone � to the verification score weighted by duration ��. If
some subwords have more discriminative power than others, one
approach to improve verification performance is to weight these
subword scores �� based on their contributions instead of their du-
ration.

2.3. Kullback-Leibler Distance Phoneme Weighting

Importance of phone segments can be increased by weighting with
the discrimination power of different phones. How to measure
the discrimination power of the phone? One approach is to ex-
amine the conditional distributions of �� given the target model
and imposter model. This is similar to what was suggested in [4]
in confidence estimation. While �� actually is the average log-
likelihood ratio, it is now considered a random variable and its
class-conditional distributions can be estimated. If the two class-
conditional distributions are “far away” from each other, one be-
lieves that �� has good discrimination power. Kullback-Leibler
(KL) distance is one kind of distances to measure how far two dis-
tributions are.

Denote the target distribution as �� ���� � ������ � ��
�
�� and the

imposter distribution as �	���� � ����	�� ��
�
��. The bar above the

mean and variance is used to denote that the mean and variance
are over the per-frame score �� instead of the individual likelihood
ratio ����. Because of the limited target data, note that both the im-
poster and target share the same variance ���. A similar approach
is taken by other researchers in normalizing against speaker vari-
ations, such as in Z-normalization [1]. The KL distance can be
obtained by

��� � ���� ���
�� ����

�	����
��	 ���

�	����

�� ����
�

and

�� ���
������

������
�

�



����	 ��
�
� � ��

�
�� ���

�
����	 ��

�
� � ��

�
��

����	 ��
	
�� ��

�
��

�
��

�
���� ��	� � ����

�

����
�

����
�
� ��	�

�


����
(5)

Thus,

��� � �
���� � ��	�

��
��� (6)

In [3], a phone weighting scheme that normalizes the difference
between the target mean and imposter mean with imposter vari-
ance was proposed with an added exponent � to adjust the domi-
nance of each phone. � is typically found empirically. With such
a weighting factor, the verification score of a utterance, denoted as
� �
��� is given by,

� �

��� �

�

�

��
���

���� �
�

�

��
���

��

�
���� � ��	�

��

��

� (7)

When � is set to 2, it is equivalent to a weight with the KL dis-
tance. Because we are normalizing against phone variations, these
weights can be estimated either speaker dependently or speaker in-
dependently. Instead of letting the average phone score �� as a ran-
dom variable, we can model the per-frame score ���� to be Gaus-
sian distributed whose mean and variance are phone dependent.
Then, a similar KL distance can be derived, denoted as � �
���,
given by,

� �

��� �

���
��� ����

��

��

���
�

������� (8)

where �� �

�
��� ��

�
�

��

��

.

In effect, the duration becomes an explicit factor scaling the
weighting factor.

3. POSTERIOR PROBABILITY TRANSFORMATION

3.1. Posterior Probability Score

One difficulty with weighting the phone discrimination power and
the duration is that very often, they are correlated. For example,
vowels often are more discriminative but also longer. Trying to
factor out the individual differences systematically is not easy. Fol-
lowing by the assumption that the likelihood ratios are themselves
Gaussian distributed random variables, we can derive the posterior
probability of whether a test utterance is produced by the target
speaker � , denoted as � �� ���� ��� � � � � �� � where �� is the indi-
vidual likelihood ratio as defined in Equation 3. To take into con-
sideration the duration information, we assume that the frame-by-
frame likelihood ratio, ���� is a random variable. The conditional
distribution of ���� under the target and imposter conditions are
denoted as,

�������� � � ������	�
�
� � �

�
���

��������� � ������	�
	
�� �

�
���

The posterior probability of observing � �� ���� ��� � � � � �� � with
phone alignment ��� � � � � �� can be expressed as

� �� ���� ��� � � � � �� �

�
� ���� ��� � � � � �� �� �� �� �

� ���� ��� � � � � �� �� �� �� � � � ���� �� � � � � �� ���� ���
�

Here �
 is the log-likelihood ratio 	��
� 
� 
� of the ��� frame of
the test utterance, and there are totally � frames in the utterance.
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Assuming the observations within each subword are indepen-
dent, we have

� �� ���� ��� � � � � �� �

�
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��
������

�� ���
��� � ��

��
������
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��
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��
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��
�
���
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�
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	�
����

�������
��
�

	�
��

��

(9)

The sigmoid function, denoted as �������� 	 �� is given by

�������� 	 �� �
�

� � ��������
(10)

By denoting ���� � ������� and using the sigmoid function in
Equation 10, we can rewrite Equation 9 as

� �� ���� ��� � � � � �� �

� ���

�
� ��
���

���
���

�
������
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� � ����
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� ���

�
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���

���
���

�	����� �	�
��

�
�

� ���

�
� ��
���

��	���� �
��

�
� (11)

Here, we substitute 
� �
�
� ��

�
�

	��
and �� �

�
� ��
�
�

�
.

Since sigmoid is a monotonic function, it transforms the verifi-
cation score to posterior probabilities. However, it does not change
the verification result in terms of equal error rate. In the transfor-
mation of the LLR score �� in Equation 11, the decision of each
subword depends on �����, and the contribution of the decision
is weighted with the segment length �� and 
�. Again, 
� is the
difference between the target and imposter means normalized by
variance. However, the score is not weighted directly. Instead, it
is first shifted by ��, which is mid-point between the two condi-
tional means. In effect, a positive contribution occurred only if ����
is closer to the target mean than the imposter mean.

Comparing the posterior probability transformation with 
 �����,

there are two main differences. First, the weighting terms ��
�
� ��

�
�

	�
,

and ��
�
� ��

�
�

	��
have a minor difference that is the later is normal-

ized by ��� . Second, the transformation scheme contains a shift of
phones verification score. Notice that these shifts only depend on
the phone labels and phone durations but are independent of the
value of ��.

3.2. Generalized Linear Model (GLM) Based Posterior Prob-
ability

In the last section, we derived Equation 11 with the assumption
that LLR are independent. It is well-known that speech observa-
tions are correlated. If we consider the joint random variables, �
and �, ���� �� � �������� only if they are independent. In the ex-
treme case where � � �, then, ���� �� � ���� � �����������
�.
Adding exponents to the joint probabilities is a way to compensate

for the wrongly-estimated probability. Thus, a scaling factor � can
be added in Equation 11.

� �� ���� � � � � �� � �

�

��
��� � ��

��
������

�� �����
��� � ��

��
������

�� ��� �
��

��� � ��
��
������

�����

� ���

�
��
���

�����
��� � ��
����

�
(12)

Interestingly, the �� becomes a scaling factor on the per phone
contribution. How we can estimate the correlation factor �� for
each phones? Equation 12 expresses the class posterior probability
as a sigmoid function of a linearly weighted combination of per
phone scores. This is a special case of the generalized linear model
or logistic regression. We rewrite Equation 12 in GLM notations
as follows.

������� ��� � ������ �

��
���

������ (13)

where �� � ���
��� � 
���� are the features to the GLM.
Well-known solutions that maximize either likelihood or square
errors [5] are available.

4. EXPERIMENTS

Subword-based text dependent speaker verification experiments
are conducted to evaluate the proposed algorithms. We use the du-
ration weighted 
 ����� as the baseline and compare it with the
two KL-based approaches, i) 
 ����� in phone based that does
not take the phone duration into account and ii) 
 ����� that is in
frame based that contains duration information. Then, we evaluate
the performance of posterior probability transformation with and
without the correlation compensation.

4.1. Data

The corpus used in these experiments is the YOHO speaker ver-
ification corpus which is widely used for speaker verification ex-
periments [6, 7, 8, 9]. For each speaker in the corpus, there are
4 enrollment sessions, each with 24 utterances, and 10 verifica-
tion sessions, each with 4 utterances. Each utterance consists of
three sets of two-digit numbers, such as (e.g. thirty-four sixty-one
seventy-six). All sessions were recorded in an office environment
using high quality telephone handset and sampled at 8kHz. Since
the LLR distributions of female and male speakers are quite differ-
ent, only male speakers were used in our experiments. 50 speakers
were held out as a development set. So, the remaining 52 speak-
ers were selected as the target speakers and the imposters for other
claimed speakers.

4.2. Experimental Setup

The universal models �� were trained using the digits subset of the
Macrophone corpus [10], with no training data from YOHO. Fea-
tures used were 12 MFCC (Mel-Frequency Cepstral Coefficient)
plus energy and their first and second order derivatives. Two sets
of models were tested, i) 20 3-state left-to-right monophone HMM
models and ii) 48 3-state triphone HMM models with up to 14 and
10 Gaussian mixtures per state. In order to estimate the per phone
parameters of the conditional distributions of the LLR, 5-fold cross
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Baseline Weighted
EER(%) EER(%) EER(%) EER(%)
� ����� � ����� � ����� ������

triphone 0.808 0.846(2.5) 0.731(2) 0.731
monophone 1.192 1.423(0.5) 1.115(0.5) 1.038

Table 1. Comparison between the EER of different weighting
schemes with the baseline for monophone and triphone model

EER(%) EER(%)
Without � SD �

0.731 0.692

Table 2. Comparison between the EER of posterior transformation
with or without � for triphone model

validations were applied. The 4 enrollment data sets per target
speaker were partitioned into 5 subsets, 4 of which were used to
estimate the target speaker model 	 via adaptation of the universal
model [11] and one was used to estimate the target parameters �
��
and 
�� . The parameters for the imposter, �
��, 


�
�, ��

�
� and ��

� were
estimated using the held-out development set, in which 20 utter-
ances from each of the 50 speakers were selected. Similarly, the �
used in GLM-based posterior probability model were determined
using cross-validation and the held-out development set.

After the parameters for the conditional distributions were es-
timated, a new model 	 for the target speakers using all 4 enroll-
ment sessions in YOHO training was created, again by adapting
from the universal model �	. The performance of the speaker ver-
ification with different weighting methods were evaluated using
equal error rate (EER) across all speakers.

4.3. Experimental Results and Discussions

The experiment results using SI weights are tabulated in Table 1.
The first columns is the baseline result � �����. While � �����

was proposed with speaker dependent weights in [3], we found that
SI weights perform as well when evaluated on the EER across all
speakers, although SD weights improve per speaker EER in some
cases.

The result of � ����� is much worse than the baseline while
� ����� gave significant improvement. This suggests that the du-
ration information is important to use in conjunction with phone
weighting. In both � ����� and � �����, � have to be estimated.
In Table 1, the best empirically estimated � are ��� and � for tri-
phone models and ��� and � for monophone models for � �����

and � ����� respectively. While the weights equal to KL distance
when � is set to 2 which was reported in [3] as the best �,we found
that a smaller � gave better performance on monophone model.
This may be due to the correlation between adjacent frames com-
pound the effect that make a smaller � more preferable, or it is due
to some model dependent difference.differences.

The last column of Table 1 shows the results of the posterior
probability transformation. We can see that the SI posterior prob-
ability transform gave an additional reduction in EER on mono-
phone model as compared to the baseline.

As suggested in Section 3.2, exponents can be added to ac-
count for frame correlation. Table 2 shows the results of using
extra exponents on the triphone task. It turns out that it is useful
when it was estimated in a speaker dependent fashion.

5. CONCLUSIONS

In this paper we proposed two weighting schemes to emphasize
subword units that are more discriminative in speaker verification.
By assuming the per-frame loge likelihood ratios between the tar-
get and imposter models to be a random variable, we proposed to
use the Kullback-Leibler distance between the subword-dependent
class conditionals as a subword weight. This is shown to reduce
EER by 10%. Instead of computing the weighted combination of
the subword scores, we also proposed a posterior probability trans-
formation of that weights the subword units implicitly. It turns out
that under the posterior probability framework, the subword scores
not only are weighted but also shifted by a subword-dependent bias
before they are combined. In addition, the posterior probability
framework can be view as a special case of GLM. Experimental
results shown that the posterior probability is slightly better than
then KL weighting approach.
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