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ABSTRACT

An extension of the well-known Probabilistic Neural Net-
work (PNN), to Generalized Locally Recurrent PNN (GLR-
PNN) is introduced. This extension renders GLRPNNS, in
contrast to PNNs, sensitive to the context, in which events
occur. A GLRPNN is therefore, able to identify time or spa-
tial correlations. This capability can be exploited to improve
performance on classification tasks. A fast three-step algo-
rithm for training GLRPNN:Ss is also proposed. The first two
steps are identical to the training of traditional PNNs, while
the third step exploits the Differential Evolution optimiza-
tion method. The performance of the proposed methodol-
ogy on the task of text-independent speaker verification is
contrasted with that of Locally Recurrent PNNs, Diagonal
Recurrent Neural Networks, Infinite Impulse Response and
Finite Impulse Response MLP-based structures, as well as
with Gaussian Mixture Models-based classifier.

1. INTRODUCTION

The locally recurrent global-feedforward architecture was
originally proposed by Back and Tsoi [1], who considered
an extension of the Multi-Layer Perceptron Neural Network
(MLP NN) to exploit contextual information. In their work,
they introduced the Infinite Impulse Response (IIR) and Fi-
nite Impulse Response (FIR) synapses, able to explore time
dependencies in the input data. Ku and Lee [2] proposed
Diagonal Recurrent Neural Networks (DRNN) for the task
of system identification in real-time control applications.
Their approach is based on the assumption that a single
feedback from the neuron’s own output is sufficient. There-
fore, they simplify the fully connected neural network ar-
chitecture, in order to manage with the training easier. A
comprehensive study of several MLP-based Locally Recur-
rent Neural Networks is also available in Campolucci et
al. [3]. The authors of [3] introduced a unifying framework
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for the gradient calculation techniques, called Causal Re-
cursive Back-Propagation. All approaches, mentioned here,
consider gradient based training techniques for neural net-
works, which, as it is well-known, require transfer functions
to be differentiable.

The work presented draws on the concept of a local re-
current global-feedforward architecture, and the locally re-
current layer we propose is similar to the IIR synapse intro-
duced in [1] and the DRNN defined by Ku and Lee. Our ap-
proach differs from the aforementioned, primarily, because
we consider PNNs instead of MLP NN. Most importantly,
however, in the architecture proposed here each summation
unit in the recurrent layer receives as input not only current
and past values of its inputs, but also the N previous outputs
of all neurons in the recurrent layer. In previous work [4],
we extended the traditional PNN architecture, proposed by
Specht [5], to Locally Recurrent PNN, in order to capture
the inter-frame correlations present in speech signals. Here,
we generalize the locally recurrent global-feedforward PNN
architecture, by adding time-lagged values of its inputs.

2. THE GLRPNN ARCHITECTURE

The GLRPNN is derived from the PNN by including a hid-
den recurrent layer, which consists of summation neurons
with feedbacks. The GLRPNNs (as PNNs) implement the
Parzen window estimator by using a mixture of Gaussian
basis functions (see [5] for details). If a GLRPNN for clas-
sification in K classes is considered, the probability density
function f;(x,) of each class k; is defined by:
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for i=1, ..., K, where x;; denotes the j-th training vector
from class k;; x,, is the p-th input vector; d is the dimen-
sion of the speech feature vectors; and M; is the number of
training patterns in class k;. Each training vector x;; is as-
sumed to be a center of a kernel function, and consequently
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Architecture of Generilized Locally Recurrent Probabilistic Neural Network
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R = dimensionality the input vectors
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Fig. 1. Architecture of the Generalized Locally Recurrent
Probabilistic Neural Network

the number of pattern units in the first hidden layer of the
neural network is given by the sum of the pattern units for
all the classes. The variance o; acts as a smoothing factor,
which smooths the surface defined by the multiple Gaussian
functions. The value of o; can be identical for all pattern
units from a specific class, or, as it was originally proposed
by Specht, it can be one and the same for all pattern units ir-
respective of the class. The architecture of the GLRPNN for
the case of two classes (/=2) and recurrence depth N=1, is
shown in Fig. 1. The locally recurrent layer is delineated
by a dashed line. More generally, the recurrent layer can be
considered as a form of IIR filter, which smooths the prob-
abilities generated for each class, by using one or more past
values of the summation outputs.

The output, y;(z;,), of the summation units located in
the locally recurrent layer is computed by:
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fori=1, ..., K. fx(zp) is the probability density function of
each class k;; x,, denotes the input vector; K is the number
of classes; N stands for the recurrence depth; z~¢ denotes
a time delay of ¢ steps; and finally a;  ; and b, j , represent
weight coefficients. The output y;(z,) of each summation
unit is subject to a regularization transformation:
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which is imposed to retain an interpretation of the output of
the recurrent layer in terms of probabilities. The notation
sgm denotes the sigmoid activation function.

Finally, the Bayesian decision rule (4) is applied to dis-
tinguish the class k;, to which the input vector x,, belongs:

D(zp) = argmaz{hic;y;(zp)},i=1,.., K 4)
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where h; is a-priori probability of occurrence of the patterns
of category k;, and ¢; is the cost function in case of mis-
classification of a vector belonging to class k;. The condi-
tional probability P(k;|X), all test vectors of set X={z,},
p=1,..., Ptobelong to class k;, is computed by:
pr,ki
P(kle) - P
where N, , is the number of vectors x;, classified by (4)
as belonging to class k;.

When the task of speaker verification is considered, a
speaker independent threshold is applied over the score (5),
and a final decision is made. The speaker is rejected as im-
postor when the probability is below a predefined value, or
otherwise is accepted with the identity claimed.

)

3. THE GLRPNN TRAINING

Similar to the LRPNN training method presented in [4], a
three-step training procedure for the GLRPNN is proposed.
By analogy to the original PNN, the first training step cre-
ates the actual topology of the network. In the first hidden
layer, a pattern unit for each training vector is created, by
setting its weight vector equal to the corresponding train-
ing vector. The outputs of the pattern units associated with
the class k; are then connected to one of the second hidden
layer summation units.

The second training step is to compute the smoothing
parameter o; for each class. According to [6], o; is deter-
mined as proportional to the mean value of the minimum
distances between the training vectors in class k;:

1 M;
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where d;; is the minimum Euclidean distance of each pat-
tern unit from class k;, with all other pattern units from
that class. The constant A is usually chosen in the range
[1.1,1.4]. In case o; is common for all classes it is cho-
sen empirically, or it is computed by applying (6) on a set,
composed by merging the training data for all classes.

The third step is adjusting the weights of the locally re-
current layer by using the same data, exploited at the Radial
Basis layer training step. Supervised training of the recur-
rent layer is equivalent to minimization of the error func-

tion:
K

E(w) =Y eiP(Miss|k;)P(k;), (7)
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where the parameter c; is the relative cost of detection er-
ror for the corresponding class k;, P(Miss|k;) is the post
probability of misclassification of the patterns belonging to
class k;, and the P(k;) is the a-priori probability of occur-
rence of the patterns of class k; in the training data set. The



values of P(Miss|k;) are obtained in the following way:
For a given weight vector w = {a, b}, the values of y; are
computed, according to (2) and (3), and then (4) is applied.
Finally, the post-probability P(Miss|k;) is computed as
P(Miss|k;) = 1 — P(k;|X), where P(k;|X) is obtained
from (5) for the case of the training data set.

The total error E(w) = FE(a,b) is reduced by adjust-
ing the weight vectors b and a by means of the Differential
Evolution (DE) algorithm [7]. From all the five variation op-
erators proposed in [7], we have observed that (8) provides
the best performance in the weight optimization procedure.
The new candidate for weight vector v; 11 is generated by:

Vg1 = wy + plwy’ —wp?), ®)

where w)!, wi?, wi? and w)* are randomly selected vectors,

different from w;, wg“t is the best member of the current
generation, and the positive mutation constant y controls
the magnification of the difference between two weight vec-
tors. The trial weight vectors obtained at the crossover step
of the DE algorithm are accepted for the next iteration only
if they yield a reduction of the value of the error function,
otherwise the previous weights are retained. The training
process ends when the target error margin is reached, or af-

ter completing a predefined number of iterations.

4. EXPERIMENTS AND RESULTS

Our text-independent speaker verification system [8], a par-
ticipant in the 2002 NIST Speaker Recognition Evaluation,
was used as a platform to compare the performance of the
GLRPNN with that of other locally recurrent architectures
like LRPNN, DRNN, and IIR and FIR MLP NNs.

In the speaker verification task, two classes (enrolled
user and a reference) are considered. Fifty male speakers,
extracted from the PolyCost v1.0 telephone-speech speaker
recognition corpus [9], were enrolled as authorized users.
As atraining data, ten utterances (about 17 seconds of voiced
speech) obtained from the first session of each speaker, con-
taining both numbers and sentences, were used. The ref-
erence model, was build by combining all users’ training
data. Depending of the probabilities computed for the user’s
and reference models, a binary decision is made for every
speech frame. These decisions are averaged over a whole
test utterance, and a final decision for acceptance or rejec-
tion is made. Utterances from all the 74 male speakers (50
users + 24 unknown to the system) available in the database
were used to perform test trials. Each user model was tested
by four target trials from the second session of the corre-
sponding enrolled user, and by 292 trials from both un-
known impostors and pseudo-impostors. About 1.3 seconds
of voiced speech per test utterance were available.

Fig. 2 presents the normalized distributions of the spe-
aker scores, generated by the traditional PNN (left) and the
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Fig. 2. Distribution of user (dashed line) and impostor (solid
line) scores for the traditional PNN (left), and the GLRPNN
for N=1 (right)

GLRPNN with a recurrence depth N=1 (right), trained by
the variation operator (8). The enrolled users are repre-
sented by dashed line and the impostors by solid one. The
considerable spread of the distribution of both users’ and
impostors’ scores for the PNN is obvious. In contrast, as
Fig. 2 demonstrates, the GLRPNN classifier produces a smal-
ler deviation from the mean value for both the users and the
impostors. In about 60% of the cases, a zero probability for
the impostor trials was produced, which is a major improve-
ment compared to the only 40% of the traditional PNN.
Moreover, the GLRPNN exhibited a significant concentra-
tion of the enrolled users’ scores at the maximum probabil-
ity point (more than 50% of all trials), in contradistinction
to the PNN, where the user scores were spread out over a
much wider area in the upper part of the scale. A better sep-
aration of the two classes was observed, that was expressed
in the terms of the Equal Error Rate (EER) as 3.43% and
3.07%, for the PNN and the GLRPNN, respectively.

Table 1 presents the EER obtained for a GLRPNN-based
speaker verification and various values of the recursion depth
N. As expected, when N increases — the EER decreases,

Table 1. The EER depending on the recursion depth NV
N 0 1 2 3 4 5
EER[%] 343 3.07 3.04 296 288 9.00

because a larger part of the inter-frame correlation is identi-
fied and exploited. The major increase of the EER, observed
for N=5, is mainly due to the insufficient amount of train-
ing data. The number of weight coefficients (2N + 1) K?)
in the recurrent layer depends in linear manner from N, but
for large N more training data are required. When such
data are not available, the neural network becomes special-
ized on the training set and is not able to generalize well
on unknown data. Important constraint that limits the recur-
rence depth is also the time window size. For large values of
N the time window could spread across two or more pho-
nemes, and even across syllables. In that case, the neural
network becomes sensitive to the linguistic information car-
ried by the training data, which can be very useful in the
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Table 2. The EER in [%] depending on the architecture

Arch FIR IIR DRNN LRPNN GLRPNN
EER 3.66 358 344 3.24 3.07
#w* 4 6 10 8 12

case of speech recognition or text-dependent speaker veri-
fication, but decreases the speaker verification performance
when a text-independence is considered.

Table 2 presents a performance comparison among the:
FIR and IIR structures [1], DRNN [2], LRPNN [4] and

GLRPNN, over a common data set, and a time-window N=1.

Exploiting one past value of the input data, these structures
also exploit (with exception of the FIR) one past value of
their own output, or the outputs of all classes. Thus, for the
same time window, a different number of weighted connec-
tions are available in each structure. The symbol “*”, next to
the number of weight coefficients w, suggests that no biases
were considered. As shown in Table 2, the best speaker veri-
fication performance is achieved for the GLRPNN, followed
by LRPNN, DRNN, IIR and FIR at the end. An increasing
EER is observed, as the number of weighted connections
decreases. The only deviation here is the LRPNN which
possesses less connections than DRNN, but exhibits better
performance. In our opinion that is due to the presence of
cross-class feedbacks from the past outputs of all classes
in the LRPNN architecture. Thus, for the same size of the
time-window, the linkage of the LRPNN is better suited to
capture the dynamics of the process.

For the sake of comparison the PNN classifier was re-
placed by one, based on Gaussian Mixture Models (GMM),
with an equivalent complexity — spherical kernels, 128 mix-
tures for the user models, and 256 mixtures for the Universal
Background Model, and EER=3.01% was obtained. Thus,
the GMM system significantly outperformed the baseline
one. When the GMM result is compared to the GLRPNN
ones (see Table 1), however, a lower EER for N=3, and
N=4 (2.96% and 2.88%, respectively) was observed. An
important advantage of the GLRPNNSs is that they concur-
rently keep faster training times than the GMMs.

In conclusion, the experimental results support the claim
that the new GLRPNN architecture outperforms traditional
PNN, LRPNN, DRNN, IIR, and FIR architectures. For the
specific cases of recurrence depth N=3, and N=4, the GLR-
PNNs demonstrate better performance than GMMs with an
equivalent complexity. Consequently, on one hand the GLR-
PNN effectively improves the speaker verification perfor-
mance, with only a limited increase of the complexity, when
compared to the other recurrent structures studied here, and
on the other hand, the GLRPNN are able to achieve bet-
ter performance (for N=3 and N=4) then the GMMs, while
keep faster training times.
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5. CONCLUSIONS

Introducing the Generalized Locally Recurrent PNN, we ex-
tended the traditional PNN architecture to exploit the inter-
frame correlation among the features extracted from succes-
sive speech frames. In addition to the GLRPNN architec-
ture, a fast three-step training method was proposed. Com-
parative experimental results for text-independent speaker
verification confirmed the practical value of the proposed
GLRPNN. A superior performance, in comparison to other
recurrent structures, was achieved. A relative reduction of
the EER by 10.5% was observed, in contrast to the one for
the PNN, without significantly increasing the complexity of
the network, and without requiring additional training data.
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